Oklahoma Corporation Commission Oil & Gas Conservation Division Post Office Box 52000 Oklahoma City, Oklahoma 73152-2000

Rule 165: 10-3-25

API No.: 35121248180001 **Completion Report** Spud Date: May 30, 2018

OTC Prod. Unit No.: 121-224571-0-0000 Drilling Finished Date: August 28, 2018

1st Prod Date: November 21, 2018

Completion Date: November 06, 2018

Drill Type: HORIZONTAL HOLE

Well Name: BELLE 5-20/29H Purchaser/Measurer: NEXTERA ENERGY POWER

MARKETING LLC

First Sales Date: 11/21/2018

Location:

PITTSBURG 17 7N 13E

NE SW SE SE 583 FSL 788 FEL of 1/4 SEC

Latitude: 35.074247222 Longitude: -95.95051666 Derrick Elevation: 687 Ground Elevation: 664

Operator: TRINITY OPERATING (USG) LLC 23879

> 1717 S BOULDER AVE STE 201 TULSA, OK 74119-4842

	Completion Type					
Х	Single Zone					
	Multiple Zone					
	Commingled					

Location Exception		
Order No		
691661		

Increased Density			
Order No			
677353			
677354			

Casing and Cement							
Туре	Size	Weight	Grade	Feet	PSI	SAX	Top of CMT
SURFACE	13.375	48	J-55	297		190	SURFACE
INTERMEDIATE	9.625	36	J-55	3475		225	1850
PRODUCTION	5.5	20	P-110	16369		1850	4300

				Liner				
Туре	Size	Weight	Grade	Length	PSI	SAX	Top Depth	Bottom Depth
	There are no Liner records to display.							

Total Depth: 16420

Packer					
Depth	Brand & Type				
1004	SWELL PACKER				

Plug				
Depth Plug Type				
There are no Plug records to display.				

Initial Test Data

March 06, 2019 1 of 2

Test Date	Formation	Oil BBL/Day	Oil-Gravity (API)	Gas MCF/Day	Gas-Oil Ratio Cu FT/BBL	Water BBL/Day	Pumpin or Flowing	Initial Shut- In Pressure	Choke Size	Flow Tubing Pressure
Dec 01, 2018	WOODFORD			10034		2730	FLOWING	1380	FULL	

Completion and Test Data by Producing Formation

Formation Name: WOODFORD

Code: 319WDFD

Class: GAS

Spacing Orders				
Order No	Unit Size			
676208	640			
691660	MULTIUNIT			

Perforated Intervals				
From	То			
6268	16237			

Acid Volumes 46,890 GALS TOTAL ACID

Fracture Treatments
330,854 TOTAL GALS SLICKWATER
10,830,700 LBS. TOTAL SAND

Formation	Тор
WAPANUKA	4335
CROMWELL	4698
CANEY	5361
MAYES	5591
WOODFORD	5706

Were open hole logs run? No

Date last log run:

Were unusual drilling circumstances encountered? No Explanation:

Other Remarks

There are no Other Remarks.

Lateral Holes

Sec: 32 TWP: 7N RGE: 13E County: PITTSBURG

NW NE NE NE

17 FNL 505 FEL of 1/4 SEC

Depth of Deviation: 5292 Radius of Turn: 477 Direction: 179 Total Length: 9969

Measured Total Depth: 16420 True Vertical Depth: 6113 End Pt. Location From Release, Unit or Property Line: 17

FOR COMMISSION USE ONLY

1141539

Status: Accepted

March 06, 2019 2 of 2

Form 1002A

Oklahoma Corpdration Commission Oil & Gas Conservation Division Post Office Box 52000 Oklahoma City, Oklahoma 73152-2000 Rule 165: 10-3-25

1016EZ

API No.: @121248180001

OTC Prod. Unit No.: 121-224571-0-0000

Completion Report

Spud Date: May 30, 2018

Drilling Finished Date: August 28, 2018

1st Prod Date: November 21, 2018

Completion Date: November 06, 2018

Drill Type:

HORIZONTAL HOLE

Well Name: BELLE 5-20/29H

Purchaser/Measurer: NEXTERA ENERGY POWER

MARKETING LLC

First Sales Date: 11/21/2018

Location:

PITTSBURG 17 7N 13E

NE SW SE SE 583 FSL 788 FEL of 1/4 SEC

583 FSL 788 FEL of 1/4 SEC
Latitude: 35.074247222 Longitude: -95.95051666

Derrick Flevation: 697 Convert Flevation: 697

Derrick Elevation: 687 Ground Elevation: 664

Operator:

TRINITY OPERATING (USG) LLC 23879

1717 S BOULDER AVE STE 201 TULSA, OK 74119-4842

Sec. 17 (54): -0-Sec. 20: 48.4502% 224571

Sec. 29: 51,5498 % 2245714 I

Completion Type						
Х	Single Zone					
	Multiple Zone					
	Commingled					

	Location Exception	
· · · · · · · · · · · · · · · · · · ·	Order No	
	691661	
		-

Increased Density	
Order No	
677353	
677354	

Casing and Cement							
Туре	Size	Weight	Grade	Feet	PSI	SAX	Top of CMT
SURFACE	13.375	48	J-55	297		190	SURFACE
INTERMEDIATE	9.625	36	J-55	3475		225	1850
PRODUCTION	5.5	20	P-110	16369		1850	4300

				Liner				
Туре	Size	Weight	Grade	Length	PSI	SAX	Top Depth	Bottom Depth
			There are	no Liner recor	ds to displa	ay.		

Total Depth: 16420

Pac	ker
Depth	Brand & Type
1004	SWELL PACKER

Depth	Plug Type

E 2018: 460,497 223,112 237.385

Initial Test Data

March 06, 2019

1 of 2

Test Date	Formation	Oil BBL/Day	Oil-Gravi (API)	Gas MCF/Day	Gas-Oil Ratio Cu FT/BBL	Water BBL/Day	Pumpin or Flowing	Initial Shut- In Pressure	Choke Size	Flow Tubing Pressure
Dec 01, 2018	WOODFORD			10034		2730	FLOWING	1380	FULL	
		Cor	npletion a	and Test Data I	by Producing F	ormation				
	Formation Name:	WOODFORD		Code: 31	9WDFD	(Class: GAS			
	Spacing Orde	rs	П		Perforated I	ntervals				
Orde	Order No Unit S			Fron	n	•	Го			
676	676208 20 +29 640		6268	8	16	237				
691	660	MULTIUNIT								
Material Control of the Control of t	Acid Volume	s			Fracture Tre	atments			ends eth. (Birthinker, to)	
46,890 GALS TOTAL ACID			\dashv	330,854 TOTAL GALS SLICKWATER						
				10	,830,700 LBS.	TOTAL SAN	D		Ĭ	

Formation	Тор
WAPANUKA	4335
CROMWELL	4698
CANEY	5361
MAYES	5591
WOODFORD	5706

Were open hole logs run? No Date last log run:

Were unusual drilling circumstances encountered? No Explanation:

5/06

Other Remarks

There are no Other Remarks.

27

Lateral Holes

Sec: 32 TWP: 7N RGE: 13E County: PITTSBURG

NW NE NE NE

SE SE SE

17 FNL 505 FEL of 1/4 SEC

Depth of Deviation: 5292 Radius of Turn: 477 Direction: 179 Total Length: 9969

Measured Total Depth: 16420 True Vertical Depth: 6113 End Pt. Location From Release, Unit or Property Line: 17

ine: 17

FOR COMMISSION USE ONLY

1141539

Status: Accepted