
 

 WWW.VLSISYSTEMDESIGN.COM 0 

 

 
 
 
 
 
 
 
 
 
 
 

 

From RISC-V architecture to Layout 

Introductory blog – Let’s rock and roll. 
Kunal Ghosh 

 

 

 



PAGE 1 

 

Hi 

Ever thought what happens when you open an application program like Microsoft Word or 

Excel or a calculator on your laptop or mobile? These are application programs written in 

high-level programming languages, which are, eventually converted to binary machine 

language (in terms of ‘1’s and ‘0’s). What’s interesting here is the software and hardware 

interface. 

A high-level program, like swap.c as shown below is first converted to an assembly 

language program (RISC-V in below example) using compiler. This assembly language is 

converted to binary machine language program using an assembler. This level of 

abstraction of your application using high-level programming languages like C, C++, Java 

or Visual Basic, proves to be a great idea to improve design 

Here’s the flow: 

Application software- System Software-Hardware 



PAGE 2 

 

One important abstraction, as shown above, is the interface between lowest level software 

(see instructions like addi, sd, slli, etc. in above image) and hardware (See below). This 

lowest level software is therefore called as instruction set architecture (ISA) or simply 

architecture. 

‘Picorv32’ is a cpu core that implements RISC-V architecture (which will be more evident 

as we continue with the upcoming course). Implementation is a hardware, which follows 

architecture abstraction. See RTL snippet in below image – 

 



PAGE 3 

 

And finally, once we synthesize/pnr picorv32 using qflow (an opensource rtl2gds 

flow) and analyze using STA tool ‘opentimer’, below is the layout what you can see 

in MAGIC – Now this layout is an actual hardware implementation of a RISC-V 

architecture, you can call it a ‘processor’ which sits on your mobile phone and runs 

all applications on your phone, like facebook, linkedin and so on 

 

Think of any application program or app (as it’s called today). It has millions of lines of 

codes written in some high-level language. But at the end of the day, it needs to be run on 

a hardware or chip which is present inside your phones or laptops. So who does that 

translation? – a layer system software’s – let’s focus on 2 of them which we need – OS 

(operating system) and compiler. Below image shows the bridge – system software – 

placed in between application programs and hardware: 



PAGE 4 

 

If you observe closely, hardware understands only 1’s and 0’s and, believe it or not, there 

was an era, when first programmers did communicate with computes using binary 

numbers. That’s tedious, right? Very quickly, some notations like add, sub, and many 

more were invented, and they replaced binary numbers shown as below: Here the 

combination of binary numbers instruct the hardware to add numbers in registers x10 

and x6, and place the result in x6. 

 

Just like this, there are hundreds of instruction sets being architected and the entire set of 

instructions are proprietary, like, ARM architecture for mobiles, x86 architecture for 



PAGE 5 

servers, and many more. Similarly, RISC-V is a new set of instructions, that is developed 

in Computer Science division of EECS department at University of California, Berkeley 

and now, it is all set to become standard open architecture for industries 

Going a level below, once you define an architecture, you would need a CPU core (to being 

with, an RTL) that implements and understands RISC-V instructions. In simple terms, the 

hardware should process binary machine language of a RISC-V command like ‘add’ and 

store results in some register which will be further processed by an IO. 

The above RTL then needs to be run through a PNR tool chain to produce the layout, ready 

for fabrication. The below image covers it all: 

Hence, we divide our set of courses in 3 parts as shown below: 

 

Isn’t this interesting? Yes, it is. “You are building a processor from scratch” 

So here I announce about my 3 new courses 

1. Introduction to risc-v instruction set architecture – Thanks to SiFive for helping me 

out on this 

2. RTL implementation and synthesis of risc-v – Thanks to Clifford Wolf 

3. RTL2GDS of picorv32 – Thanks to Tim Edwards from opencircuitdesign.com 

All you need to do is ‘Stay Tuned’ to below site for course announcement. It will be a 

journey of lifetime, you would never forget 

I will keep you posted with the links. Till then happy learning… 


