

©2016 Andy Burns, PMI-ACP, PMP

Originally published as part of the PMI® Global Congress 2016—North America proceedings.

Dragon Scales: 50 Teams Scrumming
Implementing Adaptive Project Management Practices at

Scale

Abstract |

Product portfolios can easily scale to 50 teams or more

in meeting large organizations’ needs. Large portfolios

with strong foundations are derived through values-

based leadership. The technique links corporate and

individual values to scientific principles. Scientific

principles inform us that change is constant and

therefore adaptation defines good practices. Values-

based leadership’s agile practices take root, thrive, and

adapt at the pace of business change.

The three-hundred software engineers considered herein

innovated within a portfolio of 18,000 colleagues. Their

agile, adaptive product development practices continue

to evolve from plan-driven provenance. Leveraging agile

practices at the portfolio, program, and project level

continually unleashes innovation, quality, and

throughput of value. Though contextualized in terms of

software product development in the 2010s with Scrum,

the message of innovation through values-based

adoption of scientific principles is timeless and

framework unallied. Implementation of practices

observant of values and principles endures as a way to

deliver the best products regardless of toolset.

Key words |

Scrum, Values, Principles, Practices, Agile,

Change, Scaled agile

Introduction

Motivating several hundred software

developers to adopt agile seldom occurs based on

the project manager’s legitimate, reward, expert,

referent, or punishment power. A personal, internal

motivating force is required. Appeals must be made

based on common values of the employee and

organization. Software developers value creativity,

excellence, and openness. Openness in the 2010s

became the developer’s mantra. Open source

software products rose to prominence in product

development.

Product development at scale involves

numerous groups of products. This aligns to the

essential definition of a portfolio, a group of

programs and projects (PMI, 2013). The portfolio

alluded to herein consists of 18,000 software

engineers and a sprawling product life cycle

management (PLM) platform. Dozens of products

in this framework have a thirty-year history of

innovation benefiting product engineers across the

globe.

The global program designs interfaces for

any size device aligned to the specific needs of the

product engineer. Then modern software

development called for HTML5 and CSS3

technologies to deliver the suite. The suite always

focuses on the customer. Agile approaches were

selected, given the complex nature of the endeavor

and need for customer feedback.

The program delivers in a domain of

emergence. Often answers emerge only after the

customer sees the product. It can only be known in

hindsight if the product meets the needs of several

thousand customers, using dozens of platforms.

Delivering small units of work for quick review and

feedback proves to be economical and essential.

The endeavor is more unpredictable than

P a g e | 2

©2016 Andy Burns, PMI-ACP, PMP

Originally published as part of the PMI® Global Congress 2016—North America proceedings.

predictable. Agile provides the only tenable

approach offering time to react to feedback.

The timely selection of which interface the

customer wants next determines product success.

The next things built must follow market demand.

Smaller incremental builds generate new revenues

and harvest market feedback. The risk of building

the wrong product is limited to one smaller

incremental build.

Building in smaller sets forces frequent and

often painful integration of software. To engineers

with a thirty-year history of building software every

18 months, this is an epic adventure requiring a

rallying cause, steady direction, focused processes,

and a wholly intentional leadership strategy. It

began with common values. Why this should be

done.

Values, Principles, and Practices
If you want to go fast go alone, if you want to go far

go together. – African Proverb

There are dozens of agile frameworks. They can be

described in terms of their values, principles, and

practices (Shalloway 2009). Software engineers are

intellectual, driven, and enjoy quality work. So they

have affinity for values aligned to these tendencies.

Well-wrought frameworks align to the team’s

values. Examples abound. Scrum is silent on the

matter of documentation. Extreme Programming

(XP) explicitly calls for documentation. Some

software engineers are comfortable proceeding

without documentation. Some global teams carry

extra communications burdens needing

documentation for people in other time zones,

countries, and cultures. Values guide the selection

of such practices. Global teams place a premium on

communications. They often prize responsibly

documenting architectural designs to share

company wide.

Mission, vison, and values are lingua franca

in large corporations. Of these three facets, values

form the communicative edge. Values explain why

we do what we do. We write extra documentation in

difficult circumstances to make sure we respect

every individual. Values give people the basis to act

according to principles. Values are a moral catalyst.

But what is a value? Courage is a great example.

The first of all virtues, courage allows us to take a

risk, to speak truth to power, to make an estimate,

and to make a commitment. It’s essential to any

agile framework. The power of values-based

leadership is well-stated in The Scrum Guide™,

When the values of commitment, courage,

focus, openness and respect are embodied and

lived by the Scrum Team, the Scrum pillars of

transparency, inspection, and adaptation come

to life and build trust for everyone. The Scrum

Team members learn and explore those values

as they work with the Scrum events, roles and

artifacts.

 (Schwaber & Sutherland 2016, p. 4)

Where there is fear, there must be courage.

Software engineers dread the project manager’s

question: “When will this be done?” The software

engineer values quality. The project manager values

predictability. Tension and fear can ensue.

In the core cadre of a Scrum team, we also have

business analysts, testers, user experience (UX)

professionals, and technical writers. Business

analysts value completeness. Testers value

certainty. UX people value design. Technical

writers value clarity and completeness. In all cases,

people need their values understood to fully

embrace the program. People with detachment from

values become a serious anti-pattern for success.

People unmoored from values perform nominally

and often against immutable principles governing

outcomes.

These principles act like forces of nature, much

like gravity. Release a heavy object toward your

foot, expect pain. Deploy a heavily plan-driven

project management framework in a domain of

emergence, expect project death marches, overrun

budgets and schedules, and suboptimal products.

Dozens of agile frameworks identify principles at

play in the domain of emergence.

Not everything is emergent. Not everything is

agile. There are of domains of commonality where

the right thing to do is obvious. Projects repeating

for the hundredth time with obvious correct answers

P a g e | 3

©2016 Andy Burns, PMI-ACP, PMP

Originally published as part of the PMI® Global Congress 2016—North America proceedings.

benefit little from adaptive, agile overhead. If the

principles at play indicate a project is highly

reproducible, the right answers are obvious, and

best practices clearly exist, the program would

benefit from a plan-driven approach. Such

frameworks include Six Sigma, Lean, or Kanban in

the agile gamut. Success requires review and

diagnosis of the principles at play. The basic

question is: “Will this program be operating in a

domain of emergence?” Product development does.

Success requires the courage to call out the

principles at play, often in the face of dogmatic

policy, and support the correct framework. Plan-

driven practices will certainly fail in a domain of

emergence. Conversely, adaptive, agile processes

applied to a simple program create chaos and waste.

Ironically, these are the anti-patterns agile practices

seek to avoid.

What is an agile practice? Agile practices include

things like exploratory testing, the daily stand-up

meeting, and UX design documents. Of the dozens

of agile frameworks, the common thread is that

practices intentionally address principles at play.

For example, the Extreme Programming (XP)

practice of having a daily stand-up meeting (Scrum

calls this the daily Scrum) supports the principle of

inspection and adaption. Inspection and adaption is

proven to deliver better results. A team that

frequently inspects work always outperforms a team

that doesn’t. Look to the automotive industry for

proof.

Inspection and adaptation is proven to work in

multiple industries. The true question is: “Will the

team value the practice?” The answer reveals itself

through conversation about values, principles, and

practices. Portfolio, program, and project managers

accelerate the throughput of business value and

decrease the cycle time to deliver value with a

values-based conversation regarding any new or

existing portfolio practice.

Values, principles, and practices shift societally,

scientifically, and experientially. An agile program,

by design, never completes. It is always adapting,

with change being permanent. This adaptation is an

intentional, continual selection process. A stable

core of road tested values, principles, and practices

is foundational.

To initiate a large program, select a core agile

framework. Scrum dominates the market presently.

It is a simple framework with five required events.

Scrum is elegant in compactness. The core values

are courage, openness, respect, commitment, and

focus—concepts easily embraced. The principles

are transparency, inspection, and adaption.

Principles empirically proven to outperform since

the days of Deming in Japan. The five practices are

the sprint, the daily Scrum, the sprint planning

meeting, the sprint review, and the retrospective.

These practices, road tested by thousands of teams

across the globe, form a bare-bones framework

based on values.

Through values, the team takes courage to do the

right thing. Through openness, the current state of

affairs is available for adaptation. Through focus,

each person gets to work on the most important

thing first with concentration. Through respect,

teams come to know that when they make a

commitment it is understood to be a promise. They

will do their best in a fluid enterprise that will

change constantly.

Agile frameworks are described in terms of these

values, principles, and practices. Values are a fine

entry point to understanding a framework and

judging if it will fit the situation.

In the case of this large software engineering

endeavor, the Scrum values aligned 100% to the

corporation’s stated values. Scrum aligns well to

almost any program endeavor. This is why it

dominates the market as a framework of choice.

However, the fit may not be 100%.

Software developers building systems with

millions of lines of code have additional values.

Though they almost universally ascribe to Scrum

values, the need for simplicity is dominant.

Simplicity is required to get programs to run on

devices ranging from large engineering

workstations to smartphones. Simplicity is required

to integrate millions of lines of code efficiently.

The efficacy of frequent feedback is valued and

required. Feedback requires code to be frequently

integrated across the platform landscape to

minimize rework and ultimately limit bad

investment in unmarketable products. The risk of

producing a “wrong product” is limited to a single

P a g e | 4

©2016 Andy Burns, PMI-ACP, PMP

Originally published as part of the PMI® Global Congress 2016—North America proceedings.

short iteration. It’s necessary to be open and

communicate issues as soon as they are spotted.

XP espouses communications, feedback,

simplicity, and testing as core values. All of these

values may be incrementally adopted in the large

software product development program. This

values mélange lets software engineers know that

there are important additional principles and

practices required. To build a great product, the

broader team will work within the core Scrum

framework, adding XP practices as principles

observed to be in play. This is essential

modification of the process.

XP is the most detailed framework. XP identifies

at least 10 more principles than Scrums, including

the concept of quality work. Quality work observes

that cost increases uncontrollably if quality is not

built in. The cost of poor quality is the internal

failure cost plus the external failure cost. In product

development, the internal cost is counted in

employee attrition, wasted effort, failure to deliver

business value, and poor morale. External costs like

losing market share and dissatisfied customers

accelerate a product’s end of life.

Understanding the principle that risk creates

waste, XP offers more than thirty practices (to

Scrum’s five) to deliver quality work.

The XP practices are categorized into thinking,

collaborative, releasing, planning, and development

practices. In aggregate, the thirty practices cover

everything for small teams. Situationally, each of

these thirty are the best solution for some challenges

faced. The majority of software product

development teams frequently need specific,

individual XP practices to improve releases,

development, or any of the other categories.

Several hundred people working across multiple

time zones will necessarily have different learning

curves. Adopting XP’s numerous practices in a

coordinated fashion is certainly a larger task than

adopting Scrum. Getting onto the Scrum learning

curve and adopting XP values piecemeal over time

offers a smoother glide path. A small team might be

able to efficiently adopt XP in one fell swoop. A

large-scaled program should best tailor the Scrum

framework incrementally, adding good practices,

XP, and others.

The deduction here is that a few dozen agile

methodologies offer practices. No one framework is

likely to cover all situations. By definition, agile is

never done, incrementally improving practices is a

core tenet. At large-scale, an incremental adoption

plan of select practices is more practical. Scrum

provides a solid core for scaling endeavors but lacks

(probably intentionally) all facets needed for all

situations. Maximum leverage is attained by

identifying a contender list of relevant practices.

This list should be prioritized by program

stakeholders. An intentional progression follows.

Practices are layered onto the existing core and

empirically observed for improvement. Practices

that fail to improve operations are abandoned and

others are tried, measured, and considered.

Agile is continually transitional. Adaptation is a

permanent feature. Through the lens of values,

principles, and practices, the organization focuses

on continuous improvement driven by ever evolving

techniques and empiricism. As such, the portfolio,

program, and team constantly devise new high-

leverage practices.

Leverage
Give me a lever long enough and a fulcrum on

which to place it, and I shall move the world.

– Archimedes

From the C-Suite to the team, commit to

scaled agility as a means and not as an end, to a

journey and not to a destination. The task is

undertaken with ruthless prioritization. Select and

execute copasetic practices. If they don’t work,

move on to others. The optimal goal is to maximize

value observing Little’s Law on throughput, the

Lean Project Management commandment regarding

workflow and cited so frequently in agile literature.

The goal is to increase the throughput of

business value (e.g., number of stories delivered)

while decreasing the cycle time. Cycle time is the

time to deliver (e.g., five days to get a story). The

need to increase throughput and decrease cycle time

is observed in all agile frameworks. Constant

adaptation of products and the processes that build

them increases throughput.

P a g e | 5

©2016 Andy Burns, PMI-ACP, PMP

Originally published as part of the PMI® Global Congress 2016—North America proceedings.

A constant inventory of practices must be

prioritized. From this list emerges a set of key

transition, portfolio, program, and team-level

practices offering high leverage. Continual planning

and review of these high-leverage practices creates

a road map for scaled program success. Quantify

high-leverage activities, set priority for

improvements, chaperone their implementation, and

set targets for accomplishments to scale well.

There are two key questions to ask about the

high-leverage practices. First, on a scale of 1 to 5:

“How important is the leverage point to our

portfolio?” Second, on that same scale: “How

important is it to improve this practice in the next

iteration?”

The form of the two key questions above is

excellent fundamental data for the Kano survey

technique. Kano surveys are ideal for

communicating the portfolio’s plan for establishing

a framework and high-leverage practices (Cohn

2006). The key point of the Kano survey is it not

only asks people what to change but also asks them

what they want to change. This creates an

investment in the transition to scaled agility.

Two-dozen leverage points are listed below.

They may serve as a starting point for other

portfolios scaling agile. The process of identifying

and augmenting a framework with high-leverage

practices is universally applicable, though some

noted practices are specific to software

development.

Transition Leverage
Pace, Managing the Transition, Mentoring the

Team

Portfolio Leverage
Budget Cycle, Sequencing Work, Visibility,

Requirements, Managing the Work Load

Program Leverage
Work Iterations, Program Roles, Cadence,

Managing Tactical Work, Align the Portfolio

with Teams

Team Process Leverage
Size of Stories, Organization of Teams,

Ecosystem, Acceptance Test-Driven Delivery

(ATDD), Agile Text Matrix, Team Methods,

Processes, and Framework

Team Technical Leverage
Degree of Test Automation, Test First Methods,

Design Approach, Integration Cadence

Context
Agile rejects the heavy methodology of

plan-driven or iterative project management.

Instead of attempting to outline the roles, actions,

and technology to be used for every possible

circumstance, agile lets teams innovate. There

should be as much structure as is absolutely

necessary, and no more.

Scaling agile to the portfolio in the 2010s

has seen the emergence of several heavier

methodologies (e.g., SAFe, Less, and others). A

light framework is better. But circumstances may

require a more prescriptive framework.

Circumstances to scrutinize when deciding on

framework weight include investment and life

criticality. In the latter, portfolios investing

business-critical capital benefit from more

prescriptive portfolio frameworks. For the former,

portfolios may be delivering products that lives

depend upon. Life-critical products benefit from

prescriptions for due diligence.

Prescriptive frameworks are inherently less

agile, adaptive. This is potentially the right answer

for certain situations. The litmus test, of course, is

adaptation itself. Any product intended to endure

beyond one release should be built embracing

constant change, proscribing a detailed prescription.

Change Is
To improve is to change; to be perfect is to change

often. – Winston Churchill

Much of adaptive portfolio, program, and

project management’s success depends upon people

embracing change. The few dozen high-leverage

principles described above may represent big

changes for organizations. In most cases, it’s

prudent to anticipate resistance. It, however, is a

mistake to assume people will resist change.

People do not resist change; they resist the

change process. Many organizations have

P a g e | 6

©2016 Andy Burns, PMI-ACP, PMP

Originally published as part of the PMI® Global Congress 2016—North America proceedings.

intentionally designed processes to dampen change

velocities and maintain the status quo in a product.

This has the impact of shortening the life of a

product, but this may be in line with corporate

investment strategies. People operating under these

considerations will correctly not see the value to

constant adaptation. Why change if the marching

orders are to sweat the assets?

 So, in conclusion, the preamble to any effort at

scaling agility is discussion of why adaptation is

valued in an organization. If adaptation has not been

valued, it is time for a courageous discussion.

About the Author

Andy Burns, PMI-ACP, PMP, is a proud

“traditional project manager.” Burns is Chief

ScrumMaster at one of the largest Product Life

Cycle Management (PLM) software companies.

Burns Scrums at scale with more than 50 teams

across the globe. As a PMI Global Volunteer,

Burns mentors the 24 Chapters in Region 4

References

Cohn, M. (2006). Agile estimating and planning. New York, NY: Pearson Education.

Crispin, L. (2009). Agile testing: A practical guide for testers and agile teams. New York, NY:

 Pearson Education.

Larman, C. (2009). Scaling lean and agile development: Thinking and organizational tools for large scale

Scrum. Boston, MA: Addison-Wesley Educational Publishers Inc.

Martin, R. (2011). The clean coder: A code of conduct for professional programmers. New York, NY: Pearson

Education.

Project Management Institute. (2013). A guide to the Project Management body of knowledge (PMBOK®

guide) – Fifth edition. Newtown Square, PA: Author.

Schwaber, K. & Sutherland, J. (2016). The Scrum guide™. Available at

P a g e | 7

©2016 Andy Burns, PMI-ACP, PMP

Originally published as part of the PMI® Global Congress 2016—North America proceedings.

http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf

Shalloway, A. (2009). Lean-Agile software development. New York, NY: Pearson Education.

