

TABLE OF
CONTENTS

Single Responsibility
Principle
(Software Gardening)

Transitioning from
ASP.NET WEB
API 2 TO MVC 6

08

Service Oriented
Solutions using
MSMQ & WCF

New Debugging
features in
VS 2015

WPF
ItemsControl
Fundamentals

86

What’s new in
TypeScript 1.4
and 1.5 beta

20

42

78

68

Using
ADFS with
Azure for Single
Sign-on

Internet of Things
(IoT) and Azure
The Way Ahead

Using
REST APIs of TFS
and Visual Studio
Online

Build a
Windows 10
Universal App
First Look

72 30

5650

Editor In Chief
Suprotim Agarwal
suprotimagarwal@a2zknowledgevisuals.com

Art Director
Minal Agarwal
minalagarwal@a2zknowledgevisuals.com

Contributing Authors
Ahmed Ilyas
Craig Berntson
Filip W
Kent Boogaart
Kunal Chandratre
Mahesh Sabnis
Punit Ganshani
Ravi Kiran
Shoban Kumar
Subodh Sohoni

Technical Reviewers
Damir Arh
Mahesh Sabnis
Shoban Kumar
Suprotim Agarwal

Next Edition
1st Sep 2015
www.dotnetcurry.com/magazine

Copyright @A2Z Knowledge Visuals.
Reproductions in whole or part prohibited
except by written
permission. Email requests to
“suprotimagarwal@dotnetcurry.com”

Legal Disclaimer:
The information in this magazine has been
reviewed for accuracy at the time of its
publication, however the information is distributed
without any warranty expressed or implied.

Windows, Visual Studio, ASP.NET, Azure, TFS & other Microsoft products & technologies are trademarks of the Microsoft group of companies. ‘DNC Magazine’ is an independent

publication and is not affiliated with, nor has it been authorized, sponsored, or otherwise approved by Microsoft Corporation. Microsoft is a registered trademark of Microsoft

corporation in the United States and/or other countries.

POWERED BY

TEAM AND
CREDITS

http://www.dotnetcurry.com/magazine

FROM THE
EDITOR

Editor in Chief

If you want to grow old running websites or
publishing magazines, you can’t do it alone.
Today when we reach this milestone of 3 years,
my note isn’t meant to be a retrospective nor
am I looking out to share any future plans. I
simply want to express my gratitude, if you will.

At DotNetCurry (DNC), we have a 'simple
goal' - to help you to learn, prepare and stay
ahead of the curve. We aim to offer different
prespectives, detailed walkthroughs and peeks
into Microsoft and JavaScript technologies that
you can use, directly and indirectly and on a
daily basis, in your job.

Although as simple as it might sound, for us,
it means digesting the latest developments
in these exciting technologies as they
metamorphize, and asking ourselves the
same tough question about every piece of
information, technology or feature that we
come across: “Does this make sense to our
readers?”

Fortunately my team comprises of Microsoft
MVPs and invaluable industry experts.
Together, we endeavour this goal. From the
bottom of my heart, I want to thank all my
fellow authors and reviewers for their time,
energy and dedication.

Of course, the most important thank-
you of all goes to you, the reader. After
all, without YOU, this magazine would
not exist. On behalf of the entire
DotNetCurry (DNC) Magazine team,
Thank You for reading us.

Please do continue sending us your
invaluable feedback. Reach out to
us on twitter with our handle
@dotnetcurry or email me at
suprotimagarwal@dotnetcurry.com

Suprotim Agarwal

A special note of thanks to the following
experts who shared their knowledge with the
Developer community in the last year.

Craig Berntson
Mahesh Sabnis
Ravi Kiran
Subodh Sohoni
Gouri Sohoni
Minal Agarwal
Gil Fink
Raj Aththanayake
Kunal Chandratre
Vikram Pendse
Todd Crenshaw
Shoban Kumar
Rion Williams
Punit Ganshani
Pravinkumar Dabade
Nish Anil
Kent Boogaart
Irvin Dominin
Filip W
Filip Ekberg
Edin Kapic
Damir Arh
Ahmed Ilyas

THANK YOU
FOR THE THIRD ANNIVERSARY EDITION

@sravi_kiran @maheshdotnet @craigber

@filip_woj @ganshani

@shobankr@suprotimagarwal@subodhsohoni

@kent_boogaart @kunalchandratre

@saffronstroke@ahmedailyas@damirarh

WRITE FOR US

http://www.dotnetcurry.com/writeforus.aspx

THANK YOU
FOR THE THIRD ANNIVERSARY EDITION

http://www.dotnetcurry.net/s/dncmag-inframvc-july15

8 DNC MAGAZINE Issue 19 (July-Aug 2015)

hile some of the concepts
(controllers, filters and so
on) may look similar at first
glance, because of Microsoft's

approach to rewrite everything from
scratch, transitioning your applications
from current Web API application model to
MVC 6 is actually not that simple.

There are obviously plenty of online - and
offline - resources from both Microsoft and
the community, discussing various new
features of the ASP.NET MVC 6 framework.
However, if you are worried about
backward compatibility issues, porting
your custom pipeline modifications or
understanding that gap between Web API
2 and MVC 6 - then this article is for you.

WebApiCompatibilityShim

The first place to look at when you need to
migrate an existing Web API 2 project to
MVC 6 is the package called Microsoft.
AspNet.Mvc.WebApiCompatShim.

ASP.NET MVC 6 is a very extensible
framework - and WebApiCompatShim
provides just that - a nice bridge between
the old Web API 2 world and the modern
reality of ASP.NET 5.

It is a layer of framework settings and
conventions that transform the default
MVC 6 behaviour into behaviour you might
be more used to, from Web API 2.

What's interesting is that even
the namespace of the types that
WebApiCompatShim introduces, that
are missing in MVC 6 but existed in Web
API; is the same as it used to be in the
Web API framework. Additionally, the
shim also references System.Net.Http for
you in order to reintroduce the familar
classes of HttpRequestMessage and
HttpResponseMessage.

All of this to minimize the pain related

This article will look at the parallels between the
Web API framework pipeline and the upcoming MVC 6
framework - attempting to ease your transition into the
new ASP.NET 5 world.

ASP.NET
WEB API 2
TO MVC 6

TRANSITIONING
FROM

W

9 www.dotnetcurry.com/magazine

to porting your application. To enable the shim,
you call the following extension method at your
application startup, inside the ConfigureServices
methods:

services.AddWebApiConventions();

ApiController

MVC 6 does not have dedicated controllers for Web
API - this is because it unifies both MVC (web pages)
and Web API (web apis).

WebApiCompatShim contains an ApiController
class which mimics the structure of the Web API
ApiController. It contains similar properties that
your old Web API code might be using, such as User,
Request; as well as same action helpers - methods
returning IHttpActionResult.

While for new projects it is advisable to avoid
ApiController and simply build around the
common MVC 6 Controller base class (or even
leverage the POCO-controller capabilities), if you
are migrating from Web API 2, and a lot of your
code was leaning on the members exposed by
ApiController in Web API, it certainly can save
you lots of hassle.

An interesting note is that ApiController in
MVC 6 is actually a POCO-controller itself - it does
not inherit from Controller base class.

HttpRequestMessage

WebApiCompatShim introduces a customized
binder, HttpRequestMessageModelBinder,
which allows you to bind an instance of System.
Net.Http.HttpRequestMessage directly as
a parameter of your action. This behavior was
possible in Web API and you might have some
existing code relying on this capability.

[Route("cars")]
public async Task<Ienumerable<Car>>
Get(HttpRequestMessage request)
{
 //access "request" parameter
}

You don't need to do anything special
to enable this behavior - as long as
WebApiCompatShim is configured, you can
simply use HttpRequestMessage in any action.
Additionally, an instance of HttpRequestMessage
is also exposed as a Request property of the
ApiController.

This is really useful, as there are a lot of
tools i.e. logging ones, that work directly with
HttpRequestMessage instance, rather than the
new Microsoft.AspNet.Http.HttpContext
around which ASP.NET 5 is built.

The aforementioned
HttpRequestMessageModelBinder will take care
of creating an instance of HttpRequestMessage
from the HttpContext on every request.

On top of all that, the WebApiCompatShim will also
introduce several extension methods that people
commonly used in ASP.NET Web API. They are listed
here:

public static class
HttpRequestMessageExtensions
{
 public static HttpResponseMessage
 CreateErrorResponse(this
 HttpRequestMessage request,
 InvalidByteRangeException
 invalidByteRangeException);

 public static HttpResponseMessage
 CreateErrorResponse(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, string
 message);

 public static HttpResponseMessage
 CreateErrorResponse(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, string
 message, Exception exception);

 public static HttpResponseMessage
 CreateErrorResponse(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, Exception
 exception);

 public static HttpResponseMessage
 CreateErrorResponse(this
 HttpRequestMessage request,
 HttpStatusCode statusCode,

10 DNC MAGAZINE Issue 19 (July-Aug 2015)

 ModelStateDictionary modelState);

 public static HttpResponseMessage
 CreateErrorResponse(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, HttpError
 error);

 public static HttpResponseMessage
 CreateResponse<T>(this
 HttpRequestMessage request, T value);

 public static HttpResponseMessage
 CreateResponse<T>(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, T value);

 public static HttpResponseMessage
 CreateResponse<T>(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, T value,
 IEnumerable<MediaTypeFormatter>
 formatters);
 public static HttpResponseMessage
 CreateResponse<T>(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, T value,
 string mediaType);

 public static HttpResponseMessage
 CreateResponse<T>(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, T value,
 MediaTypeHeaderValue mediaType);

 public static HttpResponseMessage
 CreateResponse<T>(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, T value,
 MediaTypeFormatter formatter);

 public static HttpResponseMessage
 CreateResponse<T>(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, T value,
 MediaTypeFormatter formatter, string
 mediaType);

 public static HttpResponseMessage
 CreateResponse<T>(this
 HttpRequestMessage request,
 HttpStatusCode statusCode, T
 value, MediaTypeFormatter formatter,
 MediaTypeHeaderValue mediaType);
}

As you can see, the extension methods include
a bunch of types that were Web API specific

(MediaTypeFormatter, HttpError) or System.Net.
Http specific (MediaTypeHeaderValue).

The shim introduces several other pain-relieving
mechanisms, all of which I have discussed
extensively in an article at http://www.strathweb.
com/2015/01/migrating-asp-net-web-api-mvc-6-
exploring-web-api-compatibility-shim/.

Old concepts mapped
to new world

Message Handlers vs Middleware

In ASP.NET Web API, the way of dealing with cross-
cutting concerns, such as logging or caching was
through message handlers. The concept of message
handlers was very simple, but very powerful. The
handlers were chained one after the other, and
each got a chance to process the incoming HTTP
request and outgoing HTTP response. Together they
formed a so called "Russian doll model", because
the handler that interacted with the request first
(the outer-most handler), got to interact with the
response last.

The example here shows a typical Web API message
handler (created off the base DelegatingHandler
class).

public class MyMessageHandler :
DelegatingHandler
{
 protected async override
 Task<HttpResponseMessage> SendAsync(
 HttpRequestMessage request,
 CancellationToken cancellationToken)
 {
 //process request

 // Call the next (inner) handler.
 var response = await base.
 SendAsync(request,
 cancellationToken);

 //process response
 return response;
 }
}

The idea of handlers is sadly no longer present in

http://www.strathweb.com/2015/01/migrating-asp-net-web-api-mvc-6-exploring-web-api-compatibility-shim/
http://www.strathweb.com/2015/01/migrating-asp-net-web-api-mvc-6-exploring-web-api-compatibility-shim/
http://www.strathweb.com/2015/01/migrating-asp-net-web-api-mvc-6-exploring-web-api-compatibility-shim/

11 www.dotnetcurry.com/magazine

ASP.NET 5, and the closest concept that can allow
you to achieve same behavior and support the same
functionality are OWIN middleware components.
While going into the details of OWIN middleware is
beyond the scope of this article, the fact that
ASP.NET 5 is a de facto OWIN implementation
allows you to plug in middleware in front of the
MVC pipeline.

This is also a key difference between middleware
and message handlers - middleware components
are technically speaking, located outside of MVC
6 pipeline, while message handlers were located
inside the Web API pipeline (albeit, at its very
forefront, before controller selection).

There are various ways of writing middleware - a
raw middleware has a rather unfriendly structure
shown below:

Func<Func<IDictionary<string, object>,
Task>, Func<IDictionary<string, object>,
Task>>

You can, however, write ASP.NET 5 middleware in
an object-oriented way, using the strongly typed
HttpContext from the new HTTP abstractions. It
will be the same HttpContext with which you get
to interact i.e. inside of MVC 6 controllers. This is
shown below.

public class MyMiddleware
{
 private readonly RequestDelegate _
 next;

 public MyMiddleware(RequestDelegate
 next)
 {
 _next = next;
 }

 public async Task Invoke(HttpContext
 context)
 {
 //process context.Request

 await _next(context);

 //process context.Response
 }
}

Web API Filters vs MVC 6 Filters

Filters were the typical component used in Web API
to wrap the functionality of your actions with some
extra logic. Web API 2 had 4 types of filters:

• action filters - for general aspect oriented
functionalities, allowing you to invoke code before
and after action execution

• authentication filters - introduced in Web API 2,
allowed you to leverage host-level authentication
provided via OWIN security middleware

• authorization filters - used for authorization (and
in Web API 1, quite often, also for (!) authentication)

• exception filters - exception handling on an
action-level

In ASP.NET 5, all the authentication logic has been
moved to the Microsoft.AspNet.Authentication and
related Microsoft.AspNet.Authentication.* packages.
This is where all the security middleware - direct
successors to Katana Project security components
are located. ASP.NET MVC 6 integrates with
them deeply, and as a result, there is no need for
authentication filters anymore.

ASP.NET MVC 6 still uses action filters
(IActionFilter), exception filters
(IExceptionFilter) and auhtorization filters
(IAuthorizationFilter), and they are virtually
identical to those in Web API 2, so the transition in
those areas should be quite straight forward.

Interestingly, aside from the "classic" filters
mentioned above, ASP.NET MVC 6 introduces two
extra types of filters, which are really specialized
versions of IActionFilters:

• TypeFilters
• ServiceFilter

TypeFilters allow you to have a custom filter
class instantiated on demand for each request
(potentially with extra parameters). Consider the
following example:

12 DNC MAGAZINE Issue 19 (July-Aug 2015)

[TypeFilter(typeof(MyFilter))]public
ActionResult Process();

This allows you to write a MyFilter class,
implementing IFilter itself, and have it
instantiated for you on every request. Why would you
want this? To have constructor dependency injection
into your filter! Normally this was not allowed in Web
API without heavily modifying the filter pipeline. In
this case, MyFilter could look as follows:

public class MyFilter : IActionFilter

{
 private IMyFancyService _fancy;

 public MyFilter(IMyFancyService fancy)
 {
 _fancy = fancy;
 }

 public void
 OnActionExecuted(ActionExecutedContext
 context)
 {
 //do stuff
 }

 public void
 OnActionExecuting(ActionExecutingContext
 context)
 {
 //do stuff
 }
}

In other words, IMyFancyService above is actually
being resolved from the built-in ASP.NET 5 IoC
container. You can also pass some extra arguments to
the constructor of MyFilter explicitly - TypeFilter
exposes Arguments object array for that.

ServiceFilters are similar, only a bit simpler. Consider
the following signature:

[ServiceFilter(typeof(OtherFilter))]
public ActionResult Process();

In this case, OtherFilter will be immediately
resolved from the ASP.NET 5 IoC container (where
you'd normally register services) - hence the name
"service". Obviously, that type would also need to
implement IFilter. Because the filter in this
case would be attempted to be obtained from the
container, it must have been registered in it in the

first place, otherwise this code would produce an
error. On the contrary, in our previous example, our
MyFilter class didn't need to be registered in the
container - however it could consume dependencies
that were coming from the container.

One extra feature worth mentioning is that MVC 6
filters are sortable out-of-the-box, so each filter
will have an Order property. Web API 2 lacked this
feature and that was actually quite constraining.

DependencyResolver vs built in
dependency injection

In ASP.NET Web API, the most common way to
enable dependency injection was to use the
IDependencyResolver abstraction. Out-of-the-
box, DI was not possible - you had to explicitly
enable it by plugging in one of the community-
provided implementations; pretty much every
major IoC container for .NET had its own
IDependencyResolver version.

Another option in Web API was to create a custom
IHttpControllerActivator, which was
responsible for instantiating controllers. There you
could either resolve them by hand, or from a global
DI container of your choice.

As far as dependency injection into other
components in the Web API pipeline - message
handlers, filters, formatters - constructor
dependency injection was generally not supported.
The only reasonable workaround was to use a
service-locator like approach - obtain an instance
of a registered IDependencyResolver from the
current HttpRequestMessage and use it to resolve
the necessary dependencies.

In ASP.NET MVC 6 things are much cleaner - as the
underlying ASP.NET 5 runtime supports dependency
injection out-of-the-box, without the need of
plugging in an external IoC container. The built-in
ASP.NET 5 IoC container is not very sophisticated,
but it will fill the majority of needs most of the time.

You configure the ASP.NET 5 DI in the Startup
class, inside the ConfigureServices method.

13 www.dotnetcurry.com/magazine

public void
ConfigureServices(IServiceCollection
services)
{
 services.AddMvc();
 services.AddSingleton<IService>(new
 MyService());
 services.AddTransient<IAnotherService,
 AnotherService>();
}

With the set up shown above, you can inject
both IService and IAnotherService into
any controller through a constructor (inlcuding
POCO controllers!). You can also inject the
dependencies into a controller's property, using the
[FromServices] attribute.

public class MyController : Controller
{
 [FromServices]
 public IService Service { get; set; }

 //rest of controller omitted for
 brevity
}

These dependencies will also be hydrated if you
inject them into the Invoke method of middleware
components:

public async Task Invoke(HttpContext
context, IService service)
{
 //do stuff with service

 await _next(context);
}

Finally, if you create ServiceFilterAttributes
or TypeFilterAttributes, you can also inject
your dependencies into them through constructor.

ASP.NET MVC 6 also supports external IoC adapters
- and those can be used to govern the dependency
injection resolution in your application instead of
the built in one. In that case, you'd use a different
version of ConfigureServices method. The
example here shows a simple set up of Autofac
container:

public IServiceProvider
ConfigureServices(IServiceCollection
services)
{

 //create Autofac container build
 var builder = new ContainerBuilder();

 //populate the container with services
 here..
 builder.RegisterType<IService>().
 As<MyService>().
 InstancePerLifetimeScope();

 //build container
 var container = builder.Build();

 //return service provider
 return container.
 Resolve<IServiceProvider>();
}

Different model binding

The out-of-the-box model binding behavior in
MVC 6 is much different than that of Web API and is
more closely aligned with the MVC 5 model.

MVC 5 used to model bind over everything in the
request - that is both query string and body of the
request. In other words, a complex type that is being
accepted as a parameter of your action could have
one property bound from the body and another
from the query string. On the other hand, Web API
provided strict differentiation between the body -
which was unbuffered and read using formatters,
and query parameters which were read using model
binders.

MVC 6 also uses binding and formatters, however
the behavior is much different from what you
might be used to when building APIs with Web API.
Consider the following model and a controller:

public class Item
{
 public int Quantity { get; set; }
 public string Name { get; set; }
}

public class ItemController
{
 [Route("item")]
 public void Post(Item item) {}
}

If your action accepts this model as an input
parameter, the following requests are valid in MVC6:

14 DNC MAGAZINE Issue 19 (July-Aug 2015)

• POST /item?quantity=1&name=foo, empty
body

• POST /item?quantity=1, body:
name=foo, content-type: application/x-
www-form-urlencoded

• POST /item, body:
name=foo&quantity=1, content-type:
application/x-www-form-urlencoded

In other words, you are able to mix-and-match
between body parameters and query parameters,
however - and this is very important - this approach
will only work for application/x-www-form-
urlencoded content type. If you try to send your
body as JSON or XML, the default MVC 6 input
binding behavior will not pick it up, and only bind
from query string! MVC 6 does not even support
working with JSON out of the box - the following
request will not be bound correctly:

POST /item
Content-Type: application/json
{"name": "foo", "quantity": 1}

This is obviously much different from the traditional
Web API behavior and can come back to haunt
you if you are not aware of these model binding
changes.

In order to force your API to use formatters to
deserialize JSON/XML input from the body, you have
to explicitly decorate your action parameter with
[FromBody] attribute.

[Route("item")]
public void Post([FromBody]Item item) {}

You can also do it globally, for your entire
application, which changes the default behavior
of MVC 6 to more Web API-like. The code
below utilizes an extensibility point called
IApplicationModelConvention that allows
you to iterate through all controllers, actions
and parameters of all MVC 6 endpoints at the
application startup and programmatically
alter them. Because of that, you can inject
FromBodyAttribute without having to manually
add it everywhere. In there you could also establish
your own convention or logic about when this given

attribute should be applied.

public class
FromBodyApplicationModelConvention :
IApplicationModelConvention {
 public void Apply(ApplicationModel
 application)
 {
 foreach (var controller in
 application.Controllers)
 {
 foreach (var action in controller.
 Actions)
 {
 foreach (var parameter in action.
 Parameters)
 {
 if (parameter.BinderMetadata is
 IBinderMetadata ||
 ValueProviderResult.
 CanConvertFromString(parameter.
 ParameterInfo.ParameterType))
 {
 // behavior configured or simple
 type so do nothing
 }
 else
 {
 // Complex types are by-default
 from the body.
 parameter.BinderMetadata = new
 FromBodyAttribute();
 }
 }
 }
 }
 }
}

Then you have to enable this convention in the
Startup class.

services.Configure<MvcOptions>(opt =>
{
 opt.ApplicationModelConventions.
 Add(new
 FromBodyApplicationModelConvention());
});

Similarily as in Web API, once you have decided
to use [FromBody] in your action, you can only
read one thing from the body, that is the following
signature will be invalid:

[Route("test")]
public void Post([FromBody]Item item1,
[FromBody]Item item2) {}

15 www.dotnetcurry.com/magazine

On the other hand, if you remove [FromBody] from
one of the parameters, you can still utilize query
string and body binding together:

[Route("test")]
public void Post([FromBody]Item item1,
Item item2) {} //item1 from body, item2
from querystring
POST /item?name=nameforitem2&quantity-4
Content-Type: application/json
{"name": "nameforitem1", "quantity": 1}

Formatters in MVC 6

Since MVC 6 is a unified MVC/Web API framework,
it is very natural that the concept of formatters
(previously only present in Web API) was brought
forward to the new world.

However, in MVC 6, formatters have been split
into input- and output-formatters, instead of the
traditional single, bi-directional formatter types
that Web API used. On top of that, I have already
mentioned in the previous section that in order
to force MVC 6 to use input formatters in the first
place, you must annotate your action parameter
with [FromBody].

Aside from that, the formatters are pretty much the
same - they have to declare two things:

• a flag whether they can read / write a given type -
since a specific formatter may not be applicable to a
specific type, for example not every user type can be
represented as RSS

• they read from request stream / write to response
stream process

Output formatters should also define which content
types they support. The formatter interfaces are
listed here:

public interface IOutputFormatter
{
 IReadOnlyList<MediaTypeHeaderValue>
 GetSupportedContentTypes(
 Type declaredType,
 Type runtimeType,
 MediaTypeHeaderValue contentType);

 bool
CanWriteResult(OutputFormatterContext
context, MediaTypeHeaderValue
contentType);
 Task WriteAsync(OutputFormatterContext
context);
}
public interface IInputFormatter
{
 bool CanRead(InputFormatterContext
context);
 Task<object>
ReadAsync(InputFormatterContext
context);
}

What is important to remember, as opposed to Web
API, is that XML formatters are disabled by default
in MVC 6. If your API needs to support XML, you
will need to bring in the Microsoft.AspNet.Mvc.Xml
package and add XmlFormatters by hand:

services.Configure<MvcOptions>(options =>
{
 //this adds both inout and output
 formatters

 options.
 AddXmlDataContractSerializerFormatter();
});

Instead, out of the box MVC 6 contains only one input
formatter and three output formatters:

• JsonInputFormatter / JsonOutputFormatter

• PlainTex tFormatter - which didn't exist in Web
API and kicks in when you return a string from your
actions, producing text/plain response. This is an
important distinction, as Web API would produce an
application/json response

• HttpNoContentOutputFormatter - also did
not exist in Web API. It is responsible for creating
a response with status code 204 when your
action returns a void or Task. The behavior in
this case is identical to Web API, however it was
handled differently there (through a service called
ResultConverter)

IHttpActionResult vs IActionResult

One of the popular additions to ASP.NET Web

16 DNC MAGAZINE Issue 19 (July-Aug 2015)

API 2 was IHttpActionResult, which was
used as a return type from an action, and
was really an interface representing various
factories for HttpResponseMessage. In fact,
Web API shipped with a large number of
implementations of IHttpActionResult
in the box that you could use straight away
in your API - such as BadRequestResult or
CreatedNegotiatedContentResult<T> to name a
few.

On the other hand, classic MVC framework has
long had ActionResult as a base abstract
type representing various responses. MVC 6 has
been aligned closely with that approach, and
IActionResult is the new abstraction that should
be used in your actions. Since Web API and MVC
frameworks have been unified in MVC 6, various
IActionResult implementations can handle both
traditional API scenarios (i.e. content negotiated
object responses, No Content responses) and
traditional MVC scenarios (i.e. view results).

public interface IActionResult
{
 Task ExecuteResultAsync(ActionContext
context);
}

Obviously, there are plenty of implementations of
that interface that come bundled in the framework
itself, many of which can be mapped one to one to
IHttpActionResult implementations from Web
API - for example BadRequestObjectResult is the
rough equivalent of the old BadRequestResult.
When building HTTP APIs with MVC 6, you will find
yourself working the most with ObjectResult
which is the type of IActionResult that has
content negotiation built in - more on that later.

Interestingly, when working with Web API, one of the
annoyances was the lack of IHttpActionResults
that dealt with serving files, and more generally
speaking, binary content. Such components would
have to be built by hand or referenced through open
source packages that grew around Web API in its
vibrant community. This has been addressed in MVC 6,
which introduces several specialized action results in
that area - FileContentResult, FilePathResult,
FileResult and FileStreamResult.

Content negotiation

In ASP.NET Web API, content negotiation was
handled by IContentNegotiator interface.
Normally, you would not use it directly, as the
framework would handle content negotiation
for you - when you returned a POCO object from
an action (instead of HttpResponseMessage
or IHttpActionResult), or when you
called one of the extension methods on the
HttpRequestMessage (i.e. CreateResponse).
However, in some scenarios (for example
determining the response media types for caching
purposes) you'd need direct access to the ConNeg
engine.

To facilitate these types of (now legacy) use cases,
WebApiCompatibilityShim actually reintroduces
all of the types involved in the content negotiation
- so not only IContentNegotiator, but also
DefaultContentNegotiator (the default
implementation) or ContentNegotiationResult.
So all your old content negotiation code can be
pretty much ported verbatim to ASP.NET MVC 6.

On the other hand, ASP.NET MVC 6 does not
have explicit service dedicated to running
content negotiation. Instead, the logic
responsible for selecting the relevant formatter
is baked into the ObjectResult class. Inside its
ExecuteResultAsync, responsible for writing
to the response stream, the framework will walk
through the available formatters and select a
relevant one.

The logic for choosing a formatter is similar to that
in ASP.NET Web API, and based on the following
order of precedence:

• Accept header
• Content-Type header
• selection based on type match

ASP.NET Web API also had a very useful concept of
MediaTypeMappings. Mappings allowed you to
override content negotiation for specific request
structure - an extension (i.e. .json), querystring
(i.e. ?format-json) or a predefined header (i.e.
Format: json).

17 www.dotnetcurry.com/magazine

While MediaTypeMapping as a base class
(that's how it was used in Web API) has no
direct counterpart in ASP.NET MVC 6, the notion
of media type mapping is indeed present
there. MvcOptions exposes an object called
FormatterMappings, which you can use (through
SetMediaTypeMappingForFormat method) to
map specific media types to a predefined string
such as json or .json.

options.FormatterMappings.
SetMediaTypeMappingForFormat(
 "pdf",
 MediaTypeHeaderValue.Parse("text/
 pdf"));

The whole mechanism is a little less extensible
than it used to be in Web API - in order to use this,
you are forced to create a route with a format
placeholder or use a format querystring. Example
routes are shown below:

app.UseMvc(routes =>
{
 routes.MapRoute("formatroute",
 "{controller}/{action}/{id}.
 {format?}", new { controller =
 "Home", action = "Index" });

 routes.MapRoute("optionalroute",
 "{controller}/{action}.{format?}",
 new { controller = "Home", action =
 "Index" });
});

What's interesting is that ASP.NET MVC 6 maps json
format to application/json out of the box. This
means that by simply appending a ?format=json
querystring to a request, you will always get a
JSON response. You can disable this behavior by
calling ClearMediaTypeMappingForFormat on
FormatterMappings object.

options.FormatterMappings.
ClearMediaTypeMappingForFormat("json");

It is also worth mentioning, that if you wish
MVC 6 to issue 406 (Not Acceptable) response
codes for situations when content negotiation is
unnsuccessful - the framework defaults to JSON
responses if it can't determine the media type
- you do it by simply inserting a new formatter,
HttpNotAcceptableOutputFormatter to the

formatters collection. This is slightly different
approach from Web API, where this type of
functionality was controlled by tweaking the
DefaultContentNegotiator and passing
true into its constructor (representing
excludeMatchOnTypeOnly parameter).

services.Configure<MvcOptions>(options =>
{
 options.OutputFormatters.Insert(0, new
 HttpNotAcceptableOutputFormatter());
});

HttpConfiguration vs MvcOptions

Finally, we should also briefly touch on the
changes in the configuration of the framework. In
Web API, everything was controlled through the
HttpConfiguration type, which was the gateway
to all important Web API components:

• all services
• filters
• formatters
• properties dictionary
• routes (through extension methods)

In MVC 6 the configuration happens through
MvcOptions object, which over the course of this
article, we have grown familiar with already. The
outline is shown below:

public class MvcOptions
{
 public AntiForgeryOptions
 AntiForgeryOptions {get; set;}
 public FormatterMappings
 FormatterMappings { get; }
 public ICollection<IFilter> Filters {
 get; private set; }

 public
 IList<OutputFormatterDescriptor>
 OutputFormatters { get; }
 public IList<InputFormatterDescriptor>
 InputFormatters { get; }

 public
IList<ExcludeValidationDescriptor>
 ValidationExcludeFilters { get; }

 public int MaxModelValidationErrors
 {get; set;}

18 DNC MAGAZINE Issue 19 (July-Aug 2015)

 public IList<ModelBinderDescriptor>
 ModelBinders { get; }

 public
 IList<ModelValidatorProviderDescriptor>
 ModelValidatorProviders { get; }

 public IList<ViewEngineDescriptor>
 ViewEngines { get; }

 public
 IList<ValueProviderFactoryDescriptor>
 ValueProviderFactories { get; }

 public
 IList<IApplicationModelConvention>
 Conventions { get; }

 public bool RespectBrowserAcceptHeader
 { get; set; }

 public IDictionary<string, CacheProfile>
 CacheProfiles { get; }
}

In many ways, MvcOptions plays the same role
as HttpConfiguration, providing a central
configuration point for many runtime settings such
as formatters, filters or model binders. Additionally,
caching is also controlled through MvcOptions
(something that was completely missing in Web
API!).

As far as the actual services go (for example,
DefaultFilterProvider, responsible
for orchestrating the filter pipeline or
DefaultControllerActivator, responsible
for instantiating the controller types), they are
registered against the ASP.NET 5 IoC container
directly. When you call AddMvc() method on
the IServiceCollection at the application
startup (necessary to be able to use MVC 6 in your
application at all), the framework will add all of the
necessary runtime services to the container. You can
then tweak or replace those by interacting with the
container itself.

Conclusion

There are quite a few things to watch out for when
trying to transition from HTTP API development
using ASP.NET Web API to the new world of
ASP.NET 5 and MVC 6. Aside from the obvious large

scale changes, there are certainly some hidden
landmines and subtle differences, and those are
usually the most frustrating to deal with. However,
if you pay attention to the points highlighted in this
article, it shouldn’t be too frustrating of a task.

Let me close out by sharing an interesting thought
from Darrel Miller, who, himself an HTTP guru,
has been one of the most active members of the
ASP.NET Web API community. He said recently on
Twitter:

“How many WebAPI people would be more likely
to use MVC6's WebAPICompatShim if it was named
WebAPIConventions?”

And I think this hits the nail on the head. The Web
API Compatibility Shim is a great way of enforcing
specific coding standards and conventions, which
have already proved to be useful and battle tested
in ASP.NET Web API. Do not be wary about using
them – even if you get shivers about a notion of
using a “shim” in production. At the end of the day,
the existence of the shim itself is just a testament
to the extensibility of MVC 6

filip w

About the Author
Filip W is a Microsoft MVP,
popular ASP.NET blogger, open
source contributor and an author
of "ASP.NET Web API 2:
Recipes". Specializes in ASP.NET
Web Stack and modern Microsoft
web technologies. Experienced in
delivering robust web solutions
in corporate context, worked on
projects in many corners of the
world (Canada, Switzerland, Finland,
Poland, Scotland). Currently works
for a Canadian digital agency,
Climax Media. Follow him on Twitter
@filip_woj.

19 www.dotnetcurry.com/magazine

http://www.dotnetcurry.net/s/dncmag-syncf-july15

New
Debugging
Features in
Visual Studio
2015

21 www.dotnetcurry.com/magazine

ebugging, diagnostics and profiling
are fundamental stages in software
development that ensures that all errors,
bugs and performance bottlenecks are

found and resolved, before the application is
deployed. Every application developer is responsible
for writing logical, syntactical and error free code.
However in real life, errors and bugs creep in, and
can slow down the application. For this reason,
developers are always looking out for tools to
manage code for debugging and performance.

Although some 3rd party profiling and debugging
tools like RedGate’s Ants Performance Profiler for
.NET applications makes the job easy for you Visual
Studio 2015 and recent Visual Studio 2013 updates
have also introduced new capabilities to maximize
developer productivity and improve code quality.

In this article, we will explore some of the
enhancements made to debugging features in
Visual Studio 2015 RC. We will also revisit some
Visual Studio 2013 debugging features wherever
applicable, for the sake of completeness.

Some new debugging features in Visual Studio
2015 RC are as follows:
• Understanding Debugging with Stepping
• Debugging a specific method out of multiple
 method calls from a single statement
• Debugging Code Data Visualizer
• Managing the Display of the Debugged Data
• Evaluating lambda expressions in debugger
 watch window

Since this article is based on the Release Candidate
version of Visual Studio, it is possible that any
feature discussed in this article may change in the
future.

Before we get started with these features, let us set
up a sample application.

Set up a Sample MVC Application
for Debugging

Step 1: Open Visual Studio 2015 and create a
new empty ASP.NET MVC application as shown in
Figure 1:

Figure 1: Empty ASP.NET MVC application

In this MVC application, add a new SQL Server
Database of the name ApplicationDB.mdf in the
App_Data folder. In this database, add a table called
‘EmployeeInfo’ with the following structure.

Figure 2: EmployeeInfo table

Step 2: In the Models folder, add a new
ADO.NET Entity Data Model with the name
ApplicationDBEDMX.edmx. This step will start
a wizard. Select ApplicationDB.mdf file and the
EmpoyeeInfo table. After completing the steps of
the wizard, the EmployeeInfo table mapping will be
generated.

Step 3: In the same project, add a new folder with
the name ‘DataAccess’. In this project, add a new class
file with the following code in it:

using System.Collections.Generic;
using System.Linq;
using MVC_ForDebugging.Models;
namespace MVC_ForDebugging.DataAccess
{
 public class EmployeeDAL
 {
 ApplicationDBEntities ctx;
 public EmployeeDAL()
 {
 ctx = new ApplicationDBEntities();

D

22 DNC MAGAZINE Issue 19 (July-Aug 2015)

 }

 public List<EmployeeInfo>
 GetEmployees() {
 return ctx.EmployeeInfoes.
 ToList();
 }

 public EmployeeInfo GetEmployee(int
id) {
 return ctx.EmployeeInfoes.Find(id);
 }

 public void
 AddNewEmployee(EmployeeInfo emp)
 {
 ctx.EmployeeInfoes.Add(emp);
 ctx.SaveChanges();
 }

 public void UpdateEmployee(int id,
 EmployeeInfo emp) {
 var e = ctx.EmployeeInfoes.
 Find(id);
 if (e != null)
 {
 e.EmpName = emp.EmpName;
 e.Salary = emp.Salary;
 e.DeptName = emp.DeptName;
 e.Designation = emp.Designation;

 ctx.SaveChanges();
 }
 }

 public bool CheckEmpNameExist(string
 ename) {
 bool isExist = false;

 foreach (var item in ctx.
 EmployeeInfoes.ToList())
 {
 if (item.EmpName.Trim() ==
 ename.ToUpper().Trim())
 {
 isExist = true;
 break;
 }
 }
 return isExist;
 }

 public bool
 CheckValidSalForDesignation(int sal) {
 bool isValid = true;
 if (sal < 5000)
 {
 isValid = false;
 }

 return isValid;
 }

 public void DeleteEmployee(int id,
 EmployeeInfo emp) {
 var e = ctx.EmployeeInfoes.Find(id);
 if (e != null)
 {
 ctx.EmployeeInfoes.Remove(e);
 ctx.SaveChanges();
 }
 }
 }
}

This class will be used for performing CRUD
operations using the Entity Framework model we
added in Step 2.

Step 4: In the Controllers folder, add a new MVC
controller with the name ‘EmployeeInfoController’.
Add the following code in it:

using System.Web.Mvc;
using MVC_ForDebugging.Models;
using MVC_ForDebugging.DataAccess;

namespace MVC_ForDebugging.Controllers {
 public class EmployeeInfoController :
 Controller {
 EmployeeDAL obj;
 public EmployeeInfoController()
 {
 obj = new EmployeeDAL();
 }

 // GET: EmployeeInfo
 public ActionResult Index()
 {
 var emps = obj.GetEmployees();
 return View(emps);
 }

 // GET: EmployeeInfo/Details/5
 public ActionResult Details(int id)
 {
 var emp = obj.GetEmployee(id);
 return View(emp);
 }
 // GET: EmployeeInfo/Create
 public ActionResult Create()
 {
 var emp = new EmployeeInfo();
 return View(emp);
 }

 // POST: EmployeeInfo/Create

23 www.dotnetcurry.com/magazine

 [HttpPost]
 public ActionResult
 Create(EmployeeInfo emp)
 {
 try
 {
 if (obj.CheckEmpNameExist(emp.
 EmpName) && obj.CheckValidSal
 (Emp.Salary))
 {
 obj.AddNewEmployee(emp);
 return RedirectToAction("Index");
 }
 else
 {
 return View(emp);
 }
 }
 catch
 {
 return View(emp);
 }
 }

 // GET: EmployeeInfo/Edit/5
 public ActionResult Edit(int id)
 {
 var emp = obj.GetEmployee(id);
 return View(emp);
 }

 // POST: EmployeeInfo/Edit/5
 [HttpPost]
 public ActionResult Edit(int id,
 EmployeeInfo emp)
 {
 try
 {
 obj.UpdateEmployee(id, emp);
 return RedirectToAction("Index");
 }
 catch
 {
 return View();
 }
 }

 // GET: EmployeeInfo/Delete/5
 public ActionResult Delete(int id){
 var emp = obj.GetEmployee(id);
 return View(emp);
 }

 // POST: EmployeeInfo/Delete/5
 [HttpPost]
 public ActionResult Delete(int id,
 EmployeeInfo emp){
 try {
 obj.DeleteEmployee(id, emp);

 return RedirectToAction("Index");
 }
 catch {
 return View(emp);
 }
 }
 }
}

This controller class contains action methods which
calls the methods from EmployeeDAL class added
in Step 3.

Generate Views from Index, Create, Details and Edit
action methods. To generate View, right click on the
Action Method and select the Add View option from
it. Build and run the application.

Note: Open RouteConfig.cs file from the App_Start
folder and change the routing as shown in the
following code:

Figure 3: Changing Routing information

This will display the Index View when the
application runs.

Now that we have setup the application, let’s jump
into the new Debugging features in Visual Studio
2015.

New Debugging Features
in Visual Studio 2015 RC
Understanding Debugging with
Stepping

We will explore a new experience of stepping
through the code. Open EmployeeInfoController.cs
and apply breakpoint on the Index action method.
Run the application, and you will see that the
Index() method from the EmployeeInfoController

24 DNC MAGAZINE Issue 19 (July-Aug 2015)

will be hit. We will make use of F10 (Step Over)
and F11 (Step Into). We will use F10 to debug the
GetEmployees() method call from Index() method
and check values returned from it.

In Visual Studio 2015, we can make use of Locals
and Autos window to check return values from the
GetEmployees() method without jumping into it, as
shown in Figure 4:

Figure 4: Checking return value in Locals Window

Using this feature, we can check the return values
from an external method call without Stepping into
the method. This is more useful if we are debugging
in a multi-layered application where the code
getting debugged, makes calls to multiple external
methods.

Note: Visual Studio 2015 IDE provides a handy
performance tooltip feature called PerfView, using
which we can check how much time is taken by a
statement. Typically we need this in case of foreach
loops. In Figure 4, you can see the PerfView tooltip
(yellow marked) which shows that the statement took
1341ms to execute.

Alternatively we can also make use of the Watch
window to check returned values using pseudo
variable of the name ‘$ReturnValue’. Open the Watch
Window and use the $ReturnValue as shown in
Figure 5.

Figure 5: Checking return value using Watch window

Debugging a specific method from
a statement with out of Multiple
Method Calls

Consider a scenario in the debugging code, where
we have a statement calling more than one method,
as shown in Figure 6:

Figure 6: Statement calling more than one method

The if statement makes calls to
CheckEmpNameExist() and CheckValidSal() methods
(along with get() method call for EmpName and
Salary properties). In traditional debugging, to
debug these methods we need to put a breakpoint
on every method. In case of Visual Studio 2015, we
can choose a specific method to debug using Step
Into Specific context menu.

To experience this new feature, apply a breakpoint
on the if statement of the Create() action method of
the EmployeeInfoController as shown in Figure 6.
Run the Index View. Click on the Create New link of
the Index View. This will bring up the Create view.
Enter Employee data in Create view and click on
the Create button. This will display the code in the
debugger on the if statement as shown in Figure 7:

Figure 7: Debugger Code

Right-click on the debug statement and select Step
Into Specific option as shown in Figure 8:

25 www.dotnetcurry.com/magazine

Figure 8: Step Into Specific option

Figure 8 shows a list of all methods called in the
currently debugged statement. From here, we can
now select specific methods to be debugged. This
will apply one-time breakpoint to the entry-point to
that method, and the method will be debugged.

Select CheckEmpNameExist() method from the list
and this method will get debugged as shown here:

Figure 9: Debugging a method

This feature gives us the benefit of selection based
debugging for a specific method. One important
thing to note here is that we can directly jump
to the specific statement for debugging using
Run to Cursor option from the context menu
(available in Visual Studio 2013 as well). In the
CheckEmpNameExist() method, right-click the
if statement and select Run to Cursor, and the
if statement will be hit by the debugger. This
eliminates the need to apply and remove breakpoint
on a specific statement for debugging. To go back to
the immediate statement from which we started the
debugging, we can make use of the Step Out feature
from the Debug menu.

 Debugging Code Data Visualizer (available in VS
 2013 too)

When debugging code, if the current statement
contains a Data Source expression, we can view the
data using Text, XML, HTML and JSON Visualizers.

To experience this feature, in the

EmployeeInfoController.cs add the following
namespace reference:

using System.Web.Script.Serialization;

Add the following lines in the Index Action method
(highlighted)

public ActionResult Index()
{
 var Emps = obj.GetEmployees();

 var jObj = new JavaScriptSerializer();

 var jsonData = jObj.Serialize(Emps);

 return View(Emps);
}

In the above method, add a breakpoint on the
return statement. The code serializes Emps into
JSON format. Run the application and place the
mouse cursor on the jsonData variable. You will see
a magnifier on debug as shown in Figure 10:

Figure 10: Debug magnifier

Click on the dropdown of the magnifier to display
the data visualizer options window:

Figure 11: Data Visualizer Options

Select the JSON Visualizer to display a window with
JSON data:

Figure 12: JSON Visualizer

26 DNC MAGAZINE Issue 19 (July-Aug 2015)

Figure 13 below displays a Search window to search data from
the received data.

Figure 13: Search JSON Visualizer

The data visualizer window will remember the
selection made by us e.g. if we select JSON
visualizer, it will keep remembering the JSON
visualizer option. Likewise we can take advantage
of various data visualizers.

Managing the Display of the
Debugged Data (also present in VS
2013)

While debugging the code using Visual Studio 2013
and Visual Studio 2015 RC, we are given a feature
of managing the data display. In our code, the Index
action method shows the Employees data. We can
manage the display of this data during debugging
using DebuggerDisplay attribute class. To experience
this feature, open the EmployeeInfo class and apply
the DebuggerDisplay attribute as shown here:

[DebuggerDisplay("Emp {EmpNo}")]
 public partial class EmployeeInfo
 {
 public int EmpNo { get; set; }
 public string EmpName { get; set; }
 public int Salary { get; set; }
 public string DeptName { get; set; }
 public string Designation { get;
 set; }
 }

In this code, the DebuggerDisplay accepts the string
parameter. Here Emp represents the constant string
and the {EmpNo} represents the EmpNo property
which will represent the value of the Employee
Record. Debug the Index action method and view
the value for Emps as shown in Figure 14.

Figure 14: Debugger display for Employee records

Figure 14 above shows the debugger display for
Employee records as Emp 1, Emp 2, etc.

Using Make Object ID to Maintain the State of the
Debug Result

Another useful debugging feature in VS 2015
(also present in VS 2013) is Make Object ID. While
debugging the code, we make use of the Watch
window to evaluate the expression. The watch
window can maintain the state of the expression in
the current scope only. When the expression moves
out of the scope, the watch on it becomes invalid.
But sometime it is necessary for us to keep watch
on the data generated by the previous debug for
the expression not in scope. We can implement this
using the Make Object Id on the watch expression.

To experience this feature, apply a breakpoint on
the Index and Create with HttpPost action methods.
Run the application, the Index action method will
be hit. Press F10 on the Emps = obj.GetEmployees();
expression. To add watch, right-click on Emps and
select Add Watch from the context menu as shown
in Figure 15:

Figure 15: Add Watch option

This will display the watch window as shown in

27 www.dotnetcurry.com/magazine

Figure 16.

Figure 16: Add watch window

To maintain the state of a specific record e.g. Emp
1, right-click on the [0] record and select the Make
Object Id option as shown in Figure 17.

Figure 17: Generate ObjectID using Make Object ID

This will generate the Object Id,

. .and will maintain the state of the first Employee
record. Complete the debugging to display the Index
view in the browser. In this view, click on the Create
New link to display the Create view. This means now
we have come out of the scope of the Index action
method.

In the Create view, enter data in the TextBoxes
and click on the Create button. This step will start
debugging the Create action method. Once we enter
in the debug mode, we can see the watch window
where the previous watch is disabled as shown in
Figure 18.

Figure 18: Disabled watch from previous debugging session

Here we cannot interact with Employee records
Emp 2 and Emp 3. But since we have generated the
object Id for Emp 1, we can check values generated
using the Object Id as $1. In the watch Window,
enter the Name as $1 and press enter, the values
will be displayed as shown in Figure 19.

Figure 19: Object ID base watch

Evaluating lambda expressions in
debugger watch window

While debugging code, sometimes we may come
across LINQ queries or lambda expressions. Now
we can evaluate these Lambda Expressions or LINQ
queries using the Immediate Window. To experience
this feature, we need to make some changes in the
code.

Open EmployeeInfoController.cs and add the
following reference in the code:

using System.Linq;

Apply the breakpoint on the Index() action method.
Run the application and the Index method will
be hit. Complete debugging for the following
statement.

var emps = obj.GetEmployees();

Now open the Immediate Window and start typing
code.

Figure 20: Lambda Expression IntelliSense

Yes! We have IntelliSense!!

28 DNC MAGAZINE Issue 19 (July-Aug 2015)

The Lambda Expression with its result can be seen
in Figure 21.

Figure 21: Evaluating lambda expressions in debugger watch
window

And with this feature, we can now evaluate Lambda
Expressions using the debugger Immediate Window
in Visual Studio 2015.

Conclusion:

Visual Studio 2015 (currently in RC as of this
writing) has provided some cool developer friendly
and easy to use features for code debugging.
Developers can now make use of these features for
effective debugging management

mahesh sabnis

Mahesh Sabnis is a Microsoft MVP
in .NET. He is also a Microsoft
Certified Trainer (MCT) since
2005 and has conducted various
Corporate Training programs for
.NET Technologies (all versions).
Follow him on twitter
@maheshdotnet. Mahesh blogs
regularly on .NET Server-side &
other client-side Technologies at
bit.ly/HsS2on

Download the entire source code from GitHub at

bit.ly/dncm19-vs2015debug

http://bit.ly/HsS2on
http://www.dotnetcurry.net/s/dncmag-dnchf-july15
http://bit.ly/dncm19-vs2015debug

29 www.dotnetcurry.com/magazine

As a .NET developer, you know how frustrating it
is when your code runs slowly, and how hard it is
to pin the problem down.

Debugging by hand, with manually inserted
timing statements, is a nightmare. It takes hours,
even days. And there’s no guarantee you’ll find
the right problem.

After all, it might not be in your code. If your
application uses a database, the bottleneck could
be there.

So what should you do? A code profiler helps, but
most of them stop at the database.

But new ANTS Performance Profiler 9
is different.

See expensive & data-heavy
operations

It is the only .NET profiler that shows you how
your code interacts with your database. This is
particularly helpful if you use an ORM, where the
risk of slow queries or too many database
requests is high.

For SQL Server databases, it now shows you the
full execution plan for your query.

Expensive operations are picked out for you. You
get automatic warnings about problems like
missing indexes. Even if the problem’s in your
database, it’s easy to find and fix.

You only need one tool, and you can do it in a single
profiling session.

Get line-level timings for your
.NET code
 Alongside database profiling, you get award-win-
ning .NET code profiling.

You get performance data for each method, right
down to line-level timings. Expensive lines of code
are highlighted for you, so you can find problems at
a glance.

Work with any .NET language
or technology
 .NET desktop applications
 ASP.NET and ASP.NET MVC applications
 Silverlight, SharePoint, and Windows Store apps
 Any .NET language, including C#, VB.NET, and F#
 SQL Server, Oracle, MySQL, &PostgreSQL
 .NET Framework 1.1-4.5, Windows XP-Windows 8,
 and Windows Server 2003-2012
 Plus, integrates with Visual Studio 2005-2013

See for yourself how ANTS Performance
Profiler 9 can speed up your application.

Try it free for 14 days at
www.red-gate.com/dotnetcurry

How to Find and Fix Slow .NET
Code, Even if the Problem is
in Your Database

“This current release makes my
favorite toolset even more
powerful. The new SQL features
that are parts of ANTS Performance
Profiler 9 make diagnosing and
tuning SQL performance within
.NET applications a breeze!”

Mitchel Sellers,
CEO/Director of Development at
IowaComputerGurus & C# MVP

“We went from an hour or more to
identify a problem to 10 minutes
or less."

Peter Lewis,
Development Manager, Citywire

Jump from your .NET code to the SQL Server queries that are slowing your application down

http://www.dotnetcurry.net/s/dncmag-redg-july15

Introduction

Active Directory Federations
Services (ADFS) is an enterprise-
level identity and access
management service provided by
Microsoft. ADFS runs as a separate
service and hence any application
that supports WF-Federation
and Security Assertion Markup

Language (SAML), can leverage this
federation authentication service.

In this article, we are going to use
ADFS configured in Azure VM for
Single Sign-on implementation. If
you have never configured an ADFS
in Azure VM or need to know the
benefits of using an ADFS, along
with some key terminologies, I
strongly recommend you to

USING

ADFS
WITH
AZURE
FOR

SINGLE
SIGN-ON IN AN

ASP.NET MVC
APPLICATION

read this article first. The steps shown
in this article are also applicable
to ADFS which already exists on-
premises. For demonstration purposes,
we are not using on-premises ADFS
but are going to use Azure VM to act as
our domain controller and ADFS server.

Applicable
Technology Stack

1. Windows Server 2012 R2
DataCenter
2. Azure VM based ADFS OR on-
 premise ADFS
3. Self-Signed SSL Certificates
4. Visual Studio 2013 Community
 Edition

Important ADFS
configurations

In this section, I will demonstrate what
ADFS should consist of, in order to
integrate well with your ASP.NET MVC
application. I will be using the same
setup as demonstrated over here.

Add details for
existing AD user and
create new user

The MVC application we are
developing is a claims-aware
application, therefore ADFS should
send in the claims that will represent
information of the user on a successful
authentication. To make this possible,
important details of each ADFS user
must be configured in Active Directory.
This section highlights settings which
are necessary for a user to enable
him/her for use of claims-aware
application.

http://www.dotnetcurry.com/windows-azure/1145/active-directory-adfs-azure-virtual-machine-authentication-aspnet-mvc
http://bit.ly/dncvscommunity
http://bit.ly/dncvscommunity
http://www.dotnetcurry.com/windows-azure/1145/active-directory-adfs-azure-virtual-machine-authentication-aspnet-mvc

31 www.dotnetcurry.com/magazine

Login to the Active Directory server. In my case, it
is the Azure VM. In your case it may be Azure VM
or on-premises AD server. Remember the steps are
going to be same irrespective of Azure VM or on-
premises Server. For this article, we will use Azure
VM.

From “Server Manager” options > select “Tools” menu
> and open “Active Directory Users and Computers”
option.

From “AntarikshDomain.com”, locate the user
“antarikshadmin”.

Double click on the user to open the details window.
Fill in the details in the “General” tab as shown in
the following screenshot.

Now we will add another user in the same active
directory. Right click on “Users” in the left hand
panel and select option as “New User”.

I am going to add my name ‘kunal’ as a new user. If
you wish, you can add yours or anybody else’s. Refer
to the following screenshot for details. Click Next
and provide a password of your choice. Make sure
that you check the options “User cannot change
password” and “Password Never Expires”. Click Next
to continue and then click on Finish to complete the
new user creation procedure.

What is my Metadata URL
and where to find it?

First let me show how you can locate the metadata
URL of your ADFS and in the next section, we will
explore the why part of it.

To get your metadata url, open Server Manager or
Azure AD VM (or on-premises AD machine) > and
from “Tools” option > select “ADFS Management”
option as shown here –

32 DNC MAGAZINE Issue 19 (July-Aug 2015)

This step will bring up the “ADFS Management”
window. Then expand the “Service” tab in the
left hand panel and select “Endpoint” option. All
endpoints available on ADFS will be displayed. Scroll
to the bottom and you can locate the metadata URL
as shown here –

If you observe, the metadata URL in the screenshot is
being displayed as
/FederationMetadata/2007-06/FederationMetadata.
xml. This is only a part of the metadata URL. The full
metadata URL would be your DNS name + the URL
we just saw. As you know, in our case we are using
Azure VM for hosting ADFS, therefore our Azure Cloud
Service URL is nothing but our DNS name. Therefore
in this case, the complete Metadata URL will be –

https://antariksh.cloudapp.net/
FederationMetadata/2007-06/FederationMetadata.
xml

If you have used the link I shared earlier to set up
ADFS in Azure VM and followed all the steps till now,
then the URL will work for you as it is. Now if you put

this URL in a browser like IE, then this is what you
will see –

It is absolutely fine if you are not able to make any
sense out of this metadata. When we configure this
metadata in our application, that’s when we will
realize its importance.

Note – If you face any certificate errors like “There is
problem with this websites security certificate” then
there’s nothing to worry here. Just click on “Continue to
this website (not recommended).” Option to continue.
The reason this error gets displayed in the browser is
because we are using Self-Signed Certificates.

If you have provided a different name to your cloud
service, then your URL will be

https://YourCloudServiceName.cloudapp.net/
FederationMetadata/2007-06/FederationMetadata.
xml

If you are using on-premises ADFS, then you
metadata URL will be –

https://YouDomainName.com/
FederationMetadata/2007-06/FederationMetadata.
xml

Before moving ahead, let’s first understand why do
we need this Metadata URL and what is its purpose.
This is explained in the next section ‘General Steps
for Claim Based Authentication’.

http://www.dotnetcurry.com/windows-azure/1145/active-directory-adfs-azure-virtual-machine-authentication-aspnet-mvc
http://www.dotnetcurry.com/windows-azure/1145/active-directory-adfs-azure-virtual-machine-authentication-aspnet-mvc

33 www.dotnetcurry.com/magazine

General Steps for Claim
Based Authentication

When we say that our application will use ADFS for
authentication, it means that our application should
be able to understand claims sent by ADFS. There
are 4 generic steps involved –

Step 1 - Add logic to your
application for supporting
claims

When you are planning to build a claim-based
application, your application needs to know how to
validate security token coming from a security token
service (in our case ADFS) and how to retrieve claim
from that security token. Microsoft has provided
rich classes in its Windows Identity Foundation
(WIF) framework to handle implementation of
claims-based application. The WIF framework
provides a basic programming model for claim-
based authentication. In order to use WIF, you
will need to add a reference to the WIF assembly
(Microsoft.IdentityModel.dll) in your WCF or ASP.NET
application.

Step 2 - Acquire or build an
issuer (ADFS)

I have already implemented this step over here
Configuring ADFS in Azure Virtual Machine.
Needless to mention, the same steps can be used if
you are using on-premises ADFS.

ADFS will be issuing security tokens and claims,
therefore ADFS is also termed as Issuer. In a broader
view, all Identity Providers are treated as Issuer or
Secure token Services (STS).

Step 3 – Configure
application to trust the issuer
(ADFS)

Once you have developed a claim-based application

using WIF and have used ADFS to issue security
token, the next step is to set up a trust relationship.
This is a very important step. An application needs
to trust the ADFS to identify and authenticate
users and make claims about their identities. When
you configure an application to rely on a specific
issuer, you are establishing a TRUST (or TRUST
RELATIONSHIP) with that issuer. The application
needs to understand what claims ADFS will be
offering, what key application should be using to
validate the tokens? What URL the user should be
using to request token? And so on.

ADFS provides answers to the above questions
using “federation metadata”. This is an XML
document which ADFS provides to the application
and in our case it can be obtained from the URL –

https://antariksh.cloudapp.net/
FederationMetadata/2007-06/FederationMetadata.
xml

I hope you now understand the important of the
ADFS Metadata URL.

It includes a serialized copy of the issuer’s certificate
that provides your application with the correct
public key to verify incoming tokens. WIF includes
a wizard that automatically configures application’s
identity settings based on this metadata. We just
need to give the wizard the URL for the ADFS, and
it downloads the metadata and properly configures
your application.

Step 4 – Configure the issuer
(ADFS) to know about your
application

The trust relationship is always two ways. In Step
3, we saw that by using Metadata URL, we can
configure trust relationship between Applications
and ADFS. Now ADFS needs to know a few things
about an application before it can issue it any
tokens. These questions include information related
to URI of the application, which claims are required
by applications out of issue by ADFS, URL of the
application to receive tokens and so on.

http://www.dotnetcurry.com/windows-azure/1145/active-directory-adfs-azure-virtual-machine-authentication-aspnet-mvc

34 DNC MAGAZINE Issue 19 (July-Aug 2015)

ADFS can get this information about the application
when we configure the application as Relying Party.
Our application is going to rely on ADFS for security
token and authentication therefore it is called as
the Relying Party.

We will follow these 4 steps so as to implement
ADFS integration in an ASP.NET MVC application.

Create ASP.NET MVC
application secured by
ADFS

So here we go with the actual implementation. I
hope you have noted the technology stack I have
mentioned at the beginning of the article.

Create claims-aware ASP.NET
MVC application

The first step would to be open Visual Studio 2013
in the administrator mode and click on File > New
> Project. A dialog box appears where in you put
the name of your project as SingleADFSDemo
(or anything else of your choice) and specify the
appropriate location. When we click OK, another pop
up appears where we need to choose the template
of the project. We will select MVC template here. As
soon as we select the MVC template, automatically
in the right hand panel, the authentication mode
changes to “Individual User Account” and we don’t
want that!!

So click on “Change Authentication” button, another
pop up appears where you can select the option as
“Organization Account”. In the right hand panel, a
drop down appears with default value selected as
“Cloud-Single Organization” and we don’t want this
option too!!

In the same drop down, select the option
On-Premises and here is the catch/confusion! Let’s
understand these drop-down options one by one!

'

• Cloud - Single Organization – this option should
be chosen if your application is authenticating
against Azure Active Directory.

• Cloud – Multiple Organization – this option is for
SaaS applications where one application will be
used by multiple clients.

• On – Premises – This option allows you to
connect to any WS-Federation provider (like ADFS)
which offers Metadata document and this is our
option for the article!

Note – Don’t go by the literal name On-Premises.
This option suggests that you can use any corporate
ADFS irrespective of the fact that ADFS is hosted on-
premises or on Azure VM.

So select “On-Premises” and the following screen
appears asking for 2 types of information.

• On Premises Authority – this should be our ADFS
metadata URL which can be from Azure VM based
ADFS or On-premises hosted ADFS.

• App Id URI – This will be the URL assigned to
the ASP.NET MVC project we are creating using
IIS Express. If we host it on a custom domain
like https://kunal.com then this URL of custom
name will be my App Id URI. Of course this can be
changed later after project creation using
web.config. We are going to keep it blank and let it
get auto-populated after project creation.

35 www.dotnetcurry.com/magazine

Add the metadata url (https://antariksh.
cloudapp.net/FederationMetadata/2007-06/
FederationMetadata.xml) of domain Antariksh, keep
App Id URL blank and click on OK to continue. Keep
rest of the options as it is and click on OK to create
the project.

After project creation, expand the references
from Solution explorer and you will observe that
System.IdentityModel.dll reference has got added
automatically.

In web.config an entry for <system.
identityModel> gets added with all the settings
required for making application claim-aware and
trust the metadata of ADFS. It is also important
to note here that localhost IIS express URL will be
added under <audienceUris> tag and metadata
URL, realm etc. added under <appSettings>.

The audience URL is the application URL so at a
later date after finishing testing with localhost, let
us say we wish to host the MVC application on:

• Azure cloud service, then my audience URI and
realm would be https://mycloudservicename.
cloudapp.net/ or

• Azure webApps, then it would be https://
mywebsites.azurewebsites.net/ or

• Custom domain like kunal.com, then it would be
https://kunal.com/ and so on. You got the idea right?

So hereby we have defined the trust relation in our
MVC application or Relying Party to Azure VM based
ADFS.

Adding MVC app as
Relying party trust in
ADFS

Let us move back to ADFS to do some
configurations. In this step, we will essentially tell
ADFS that our MVC application with localhost url is
a trusted application and you can send the security
tokens to it after successful authentication from a
user. In technical terminology, this is nothing but
adding relying party trust in ADFS.

So login to the ADFS Azure VM. Open Server
Manager > Tools > ADFS Management. Expand
“Trust Relationships” from left hand panel and
select “Relying Party trusts” option. You will see that
Device Registration Service is already present as a
relying party. Now click on the option “Add Relying
Party Trust” in the right hand panel.

The Add relying party wizard will appear. Click on
the Start button to continue. Select the option

36 DNC MAGAZINE Issue 19 (July-Aug 2015)

“Enter data about relying party manually” and click
on Next to continue. Now we are going to use our
localhost URL as relying party therefore we are
providing the name as localhost application.

Click Next to continue. In the Choose Profile
window, select “ADFS Profile” option and click Next
to continue. The ADFS configured on Windows
Server 2012 is ADFS 3.0 therefore we are not
selecting 1.0 and 1.1 profile option.

In the “Configure Certificate” option let’s not do
anything. This window gives you an option to
choose the certificate for encrypting tokens. As of
now, we are encrypting none of the tokens therefore
simply click on Next to continue. In the “Configure
URL” window, select the checkbox against the option
“Enable support for the WS-Federation passive
protocol”. The Textbox will get enabled and this is
where we need to put our relying party URL or in
simple words- our MVC application URL. From web.
config file, copy value for the key ida:AudienceUri
and put in the textbox as shown here and then click
Next to continue.

In “Configure Identifiers” we already have the
required relying party added, therefore simply click
Next to continue. Now select “I do not want to

configure multi-factor authentication settings for
this relying party trust at this time” and click Next
to continue. Select “Permit all users to access this
relying party” and click Next to continue.

In the “Ready to add trust” window, click Next to
continue. In the “Finish” window, select the checkbox
to open the claims rules and click on Close.

The Edit claim rules window pops up. At this point,
ADFS knows about our MVC application but there a
couple of additional things required. This is where
we tell ADFS which claims need to be sent to the
relying party and what values will be present in
those claims.

Click on the “Add Rule” button.

Select template value as “Send LDAP attributes
as claims”. Actually claims will be sent by Active
Directory and Active Directory is a LDAP based store,
therefore we are selecting this template. Now click
on Next to continue.

37 www.dotnetcurry.com/magazine

In configure Rule window, provide the name for the
rule as Send AD Attributes. Select the attribute store
as “Active Directory”. In the mapping table, map the
values as shown here –

Click on Finish to exit the wizard and then click OK
to complete claims rules configuration.

Running the application

Alright. Now is the time to test everything we
have done so far. Going back to Visual Studio, hit
F5 to start the application in debug mode. Click
continue on certificate errors and hurraahh! If you
are running your application in IE, you will see a
credentials box from our Azure VM or on-premises
ADFS as shown here –

Enter the credentials of antarikshadmin or your
ADFS admin and you will be redirected to the home
page of the MVC application with your admin name
flashing in the right hand upper corner as shown
here –

Isn’t this amazing? We did a complete ADFS
integration in our MVC application without writing a
single line of code! Let’s go further and analyze the
claims we are receiving from ADFS.

Viewing the claims retrieved

Now we must understand the different claims our
application is receiving. We are going to populate
all the received claims in the About action. Let’s
first rename the About action to Showclaims from
Layout.cshtml as highlighted here –

Modify the HomeController About action to
ShowClaims and add some code to return claims to
the views. You will need to use
System.Security.Claims reference at the top. Refer to
the following screenshot for details –

Rename the About.cshtml view to

38 DNC MAGAZINE Issue 19 (July-Aug 2015)

ShowClaims.cshtml and add the following code in
the view as shown here –

Run the application, enter ADFS admin credentials.
After successful login, click ShowClaims action at
the top and all the claims sent by ADFS will be
displayed.

The way we used admin user, other AD users can
also be used in the same way. Remember we
configured an extra user in ADDC called ‘kunal’ or
whatever you chose the username as. Go ahead
and use the credentials of this new user created in
ADDC and see if you get similar results.

Now you can use any of these claims like email in
your application and can provide authorization to
the user based on authorization roles and rules in
your database.

Making life easier for
developers to bypass ADFS
authentication during
development

One of the most frequent questions I have
encountered in person and in forums is about
developers asking how to bypass ADFS temporarily.
Once ADFS integration is implemented in a project,
every time you run the application, it keeps asking
you to enter the credentials and Developers who
are working everyday on the same project, are

bound to get frustrated. That’s where I thought
it is worth to spend some time explaining a
simple technique to bypass ADFS authentication
mechanism during development work.

Just open the web.config, search for <deny
users="?" /> and comment it. You are done!
Now if you run the application, ADFS login box will
not appear and entire application will be accessed
anonymously.

Conclusion

In this article we saw how easy it was to implement
a single ADFS integration in ASP.NET MVC and how
to retrieve the claims, relying party, claims rules
and many other aspects involved with a typical
WSFederation implementation using Windows
Identity Foundation (WIF) technique.

We can also configure our ASP.NET MVC application
to consume multiple ADFS authentication (either
Azure VM configured or On-premises) using
Microsoft OWIN KATANA. Keep an eye out for an
upcoming article on multiple ADFS authentication
on www.dotnetcurry.com

About the Author

kunal
chandratre

Kunal Chandratre is a Microsoft Azure
MVP and works as an Azure Architect in
a leading software company in (Pune)
India. He is also an Azure Consultant to
various organizations across the globe
for Azure support and provides quick
start trainings on Azure to corporates
and individuals on weekends. He
regularly blogs about his Azure
experience and is a very active member
in various Microsoft Communities and
also participates as a ‘Speaker’ in many
events. You can follow him on Twitter
at: @kunalchandratre or subscribe to
his blog at http://sanganakauthority.
blogspot.com

http://www.dotnetcurry.com
http://sanganakauthority.blogspot.com
http://sanganakauthority.blogspot.com

39 www.dotnetcurry.com/magazine

Better Data MeaNs Better BusiNess

www.MelissaData.com 1-800-MELISSA

You can’t turn Big Data into Big Value if it’s messy. Garbage in, garbage out will always be a
problem. Go back to the basics – cleaning all of your data is still the best, first step for success.
Melissa Data provides the data quality tools and methods you need to correct, consolidate, and
enrich contact data for improved data integration, business intelligence, and CRM initiatives.
Always start with quality data – it’s the easy way to get straight A’s.

• Verify addresses, phones & emails for over 240 countries
• Add geocodes and demographics for better insight
• Match duplicate records for a single view of the customer
• Identify change-of-address records before mailing
• On-premise and Cloud solutions
• Free trials with 120-day ROI guarantee

MasteriNg the fuNdameNtals is
the key to your success.

Data Quality
MasteriNg the fuNdameNtals is MasteriNg the fuNdameNtals is MasteriNg the fuNdameNtals is

Data Quality

• Free trials with 120-day ROI guarantee

MasteriNg the fuNdameNtals is MasteriNg the fuNdameNtals is

1
MasteriNg the fuNdameNtals is MasteriNg the fuNdameNtals is MasteriNg the fuNdameNtals is MasteriNg the fuNdameNtals is

11110
MasteriNg the fuNdameNtals is MasteriNg the fuNdameNtals is MasteriNg the fuNdameNtals is

001

http://www.dotnetcurry.net/s/dncmag-melissa-july15

WORKING HARD, PARTYING HARDER

41 www.dotnetcurry.com/magazine

42 DNC MAGAZINE Issue 19 (July-Aug 2015)

WWPF
ItemsControl
Fundamentals

casual glance at WPF’s ItemsControl may
not elicit much excitement, but behind
its modest façade lies a wealth of power

and flexibility. Gaining a deep understanding of
the ItemsControl is crucial to your efficacy as a
WPF developer. Such an understanding will enable
you to recognize and rapidly solve a whole class
of UI problems that would otherwise have been
debilitating. This two part article will help you
obtain this understanding.

As an added bonus, the knowledge you garner here
will be applicable to the wider XAML ecosystem.
Windows Store, Windows Phone, and Silverlight
platforms all include support for ItemsControl.
There may be slight differences in feature sets or
usage here and there, but for the most part your
knowledge will be transferrable.

In this first part of the article, we will explore the
fundamental concepts of the ItemsControl class.

The Basics

The XAML for the simplest possible ItemsControl
is:

A <ItemsControl/>

This is equivalent to invoking the ItemsControl
constructor and omitting any property
modifications. If you put this inside a Window, what
you get for your efforts is decidedly dull. Since the
ItemsControl has no items (how could it? - we’ve
not told it where to get items from) it renders
without obvious appearance. It’s still there, but we’ll
need to change the Background property to Red in
order to reveal it:

<ItemsControl Background="Red"/>

Figure 1 A default ItemsControl on the left, and with an explicit
background color on the right

As you can see in Figure 1, it’s now clear that our
ItemsControl occupies the entire Window. This
implies that it must be having some effect on the

43 www.dotnetcurry.com/magazine

W visual tree, and we can confirm this using Visual
Studio 2015’s new WPF Visualizer tool.

Note: Alternatively, you could use the excellent Snoop
utility. See http://snoopwpf.codeplex.com/.

In order to use this visualizer we need to be
debugging, so we first need to set a breakpoint in
the code-behind for our Window. But where? We
only have a constructor at this point and during
construction WPF has not yet had a chance to
realize the visual tree, so we need to add some
code. Perhaps the simplest thing to do is add this
code to our constructor:

this.Loaded += delegate {
 var dummy = this;
};

Now we can set a breakpoint on our dummy variable.
Execute the application and when the breakpoint is
hit, hover your cursor over this. Click the little
magnifying glass icon that appears in the tooltip.
You will then see the WPF Visualizer, per Figure 2.

Figure 2 The WPF debug visualizer, new to Visual Studio 2015

As you can see, even a default ItemsControl with
no items still includes some visual elements. The
Border is what we see rendered when we set the
BackgroundColor on our ItemsControl. Inside
the Border resides an ItemsPresenter and, inside
that, a StackPanel. Neither of these elements has
any visual appearance themselves – they’re only of
utility if our ItemsControl actually has items.

Populating Items

The simplest way to get some items into our
ItemsControl is via the Items property. This

property is of type ItemCollection, which is
essentially just a non-generic collection of items
in the ItemsControl. As we’ll discover later,
different ItemsControl subclasses have different
preferences for the type of items you place within
them, but the ItemsControl itself doesn’t care – as
long as the item is a FrameworkElement subclass.
For example:
<ItemsControl>
 <ItemsControl.Items>
 <Label>A Label</Label>
 <Button>A Button</Button>
 <CheckBox>A CheckBox</CheckBox>
 </ItemsControl.Items>
</ItemsControl>

We can simplify the XAML further because the
Items property is the content property for an
ItemsControl:

<ItemsControl>
 <Label>A Label</Label>
 <Button>A Button</Button>
 <CheckBox>A CheckBox</CheckBox>
</ItemsControl>

Either way, we get the UI depicted in Figure 3.

Figure 3 Some user interface items in an ItemsControl

What if we simply throw some textual content into
an ItemsControl instead of UI components? Let’s
try throwing some places in there:

<ItemsControl>
 London
 Amsterdam
 Adelaide
</ItemsControl>

Figure 4 shows the result, which is perhaps a little
unexpected.

Figure 4 Some textual items in an ItemsControl

http://snoopwpf.codeplex.com/

44 DNC MAGAZINE Issue 19 (July-Aug 2015)

What happened here is that any text is
automatically placed inside a TextBlock. Per the
rules of XML parsing, all three “items” are parsed as
one piece of text. We can confirm this via the
WPF Visualizer – see Figure 5.

Figure 5 Our text has been hosted inside a single TextBlock

OK, so now we know we can add any number of user
interface elements to an ItemsControl simply by
including them as children of the ItemsControl
element in our XAML. But what’s the point? How is
this any better than simply including the items as
children of a StackPanel instead? In fact, if you
look at Figure 5 you’ll see that a StackPanel is
hosting our items anyway (we’ll find out why later).

The answer is: you normally wouldn’t. At least,
not with an ItemsControl. You might use this
approach with subclasses of ItemsControl,
for reasons we’ll discover later. Regardless, it’s
an instructive stepping-stone on our path to
a data-driven ItemsControl, which is where
ItemsSource comes in.

The Items and ItemsSource properties are
mutually exclusive – it makes sense to set only
one of them and any attempt to use both will
result in an exception. ItemsSource allows us to
give the ItemsControl a data source from which to
materialize the items it displays. This could be an
XML document or a list of CLR objects. In practice I
have found XML document data sources to be of use
only in standalone demos, so I am going to ignore
them here. In a production system, you will almost
certainly want to create view models around your
data – whether it’s XML-based or otherwise – and
bind your ItemsControl to them instead.

Let’s start out by just assigning a List<string> to
the DataContext of our Window:

public MainWindow()

{
 InitializeComponent();
 this.DataContext = new List<string>
 {
 "London",
 "Amsterdam",
 "Adelaide"
 };
}

Now we can modify our XAML thusly:

<ItemsControl ItemsSource="{Binding}"/>

The result is shown in Figure 6. It is visually
identical to what we’d get if we manually added
three TextBlock controls to the Items property of
our ItemsControl. The resulting visual tree is also
very similar, but not exactly the same. When using
ItemsSource, each of our TextBlock controls
is hosted inside a ContentPresenter whereas
when using Items they are not. The reasons are
not terribly important here, but it comes down to
ItemsControl container generation logic, which
is responsible for wrapping items in a container if
required.

Figure 6 Our ItemsControl is now obtaining its data from a
List<string>

ItemsControl also provides a HasItems property,
but I haven’t found it to be of any use. If you need
to trigger UI changes based on your available data,
you’re better off modelling those requirements in
your view models. Not only does this give you more
centralized logic and greater flexibility (for example,
what if you need to know when you have only one
item?), it also enables you to test such scenarios too.

Now that we know how to get items into our
ItemsControl, can we stop ignoring the fact that
the items are visually boring? How can we adjust
their appearance?

45 www.dotnetcurry.com/magazine

Basic Item Appearance
Customization

A simple place to start with adjusting
the appearance of our items is with the
ItemStringFormat property. This property enables
us to provide a format string that will be used to
produce the displayed string for each of our items.
For example, if we set it as follows:

<ItemsControl
 ItemsSource="{Binding}"
 ItemStringFormat="City: {0}"/>

Figure 7 Using the ItemStringFormat property to modify the
text shown for each item

The result is that each of our items is prefixed with
“City: “, as you can see in Figure 7. Of course, all the
usual rules and behavior for .NET string formatting
apply here. In this case, our data items are of type
string, so we’re a little limited in our formatting
capabilities. Let’s change to using dates:

this.DataContext = new List<DateTime>
{
 DateTime.Now,
 new DateTime(2013, 02, 13),
 new DateTime(2004, 12, 31)
};

Now we can set our ItemStringFormat as follows:

<ItemsControl
 ItemsSource="{Binding}"
 ItemStringFormat="MMMM dd, yyyy"/>

The result is depicted in Figure 8.

Figure 8 Binding to DateTime instances without
ItemStringFormat (left) and with it (right)

As mentioned earlier, we would typically have
view models wrapping the data we wish to bind to.
Suppose we want to refactor our list of cities into a
list of view models representing those cities. We can
achieve this very quickly as follows:

public sealed class CityViewModel
{
 private readonly string name;
 public CityViewModel(string name)
 {
 this.name = name;
 }
 public string Name => this.name;
}

// in our constructor
this.DataContext = new
List<CityViewModel>
{
 new CityViewModel("London"),
 new CityViewModel("Amsterdam"),
 new CityViewModel("Adelaide")
};

If we revert our ItemsControl so that it does
not specify ItemStringFormat and run the
application, we see Figure 9. Clearly this is not what
we’re after. What’s happening here is WPF is calling
ToString on each of our view models in order to
obtain a default representation of them. After all, we
haven’t told WPF that we actually want to show the
Name property on our view model.

Figure 9 Default visualization of our view models

We can do exactly that by specifying the
DisplayMemberPath property:

<ItemsControl
 ItemsSource="{Binding}"
 DisplayMemberPath="Name"/>

This gets us back on track and is visually
indistinguishable from Figure 6 where we were
using a List<string> as our data source. Of
course, we can combine DisplayMemberPath with
ItemStringFormat:

46 DNC MAGAZINE Issue 19 (July-Aug 2015)

<ItemsControl
 ItemsSource="{Binding}"
 DisplayMemberPath="Name"
 ItemStringFormat="City: {0}"/>

This gets us the same UI as shown in Figure 7.

The view model we created above is pretty
pointless. All it does is wrap our city name so it’s not
adding any value. In reality, we’d likely have several
properties for each city:

public sealed class CityViewModel :
ReactiveObject
{
 private readonly string name;
 private readonly float population;
 private readonly
 ObservableAsPropertyHelper<IBitmap>
 countryFlag;

 public CityViewModel(string name, float
 population, Task<IBitmap> countryFlag)
 {
 this.name = name;
 this.population = population;
 this.countryFlag = countryFlag
 .ToObservable()
 .ToProperty(this, x =>
 x.CountryFlag);
 }
 public string Name => this.name;
 public float Population => this.
 population;
 public IBitmap CountryFlag => this.
 countryFlag.Value;
}

I’ve added population (in millions) and a country
flag image. I’m using Splat for the image so that our
view model remains agnostic of the platform on
which it is running. You’ll notice I’m also deriving
from ReactiveObject and using something called
ObservableAsPropertyHelper. These are types
from ReactiveUI . ReactiveUI is outside the scope
of this article, but you can see that our bitmap is
loaded asynchronously. I’m using ReactiveUI as a
simple means of surfacing the asynchronously-
loaded bitmap as a property. Until it has loaded, our
CountryFlag returns null. Once loaded, a property
changed notification is raised for CountryFlag, and
it returns the loaded bitmap.

I then construct the view models in this manner:

new CityViewModel(
 "London",
 8.308f,
 BitmapLoader
 .Current
 .LoadFromResource(
 "pack://application:,,,/
 ItemsControlArticle;component/
 Images/gb.png",
 null,
 null))

Again, the details aren’t terribly important for the
purposes of this article.

Now that we have view models with more
interesting data in them, how can we take
advantage of this from our view? The
ItemsControl class includes an ItemTemplate
property that allows us to specify a rich visual tree
to represent each item. Suppose we want to display
the city name in bold with the population count
underneath it. Off to the right, we want to display
the country flag. We can achieve this as follows:

<ItemsControl ItemsSource="{Binding}">
 <ItemsControl.ItemTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>
 <TextBlock
 Text="{Binding Name}"
 FontWeight="Bold"
 FontSize="10pt"/>
 <TextBlock
 Grid.Row="1"
 Text="{Binding Population,
 StringFormat=Population {0:0.#}
 million}"
 FontSize="8pt"
 Foreground="DarkGray"/>
 <Image Grid.Column="1"
 Grid.RowSpan="2"
 Source="{Binding CountryFlag,
 Converter={StaticResource
 ToNativeConverter}}"/>
 </Grid>
 </DataTemplate>
 </ItemsControl.ItemTemplate>
</ItemsControl>

47 www.dotnetcurry.com/magazine

What we’ve effectively done here is told the
ItemsControl “hey, whenever you need to
render an item, please create a copy of this Grid
with these children and these bindings”. The
DataContext for each Grid will be a view model,
which is why the bindings will work. If we run the
application again, we see the UI in Figure 10. It’s far
from perfect, but it’s a big step forward.

Figure 10 Using an ItemTemplate to customize the visual tree
of each item

The ItemTemplate gives us a lot of flexibility
over how our items are rendered, but
ItemsControl offers us even more flexibility
by way of its ItemTemplateSelector
property. Setting this property to an instance
of DataTemplateSelector gives us a means
of dynamically selecting a template for each
item. Suppose, for example, we generalized our
application such that it displays places, not just
cities. We can add a CountryViewModel alongside
our CityViewModel. Both view models extend
a base view model called PlaceViewModel.
We would like to display cities differently to
countries, but all places are displayed inside
the same ItemsControl. This is precisely the
kind of scenario that ItemTemplateSelector
accommodates.

Some simple refactoring of our existing code gives
us our three view models. We can then define a
DataTemplateSelector as follows:

public sealed class
PlaceDataTemplateSelector :
DataTemplateSelector
{
 public DataTemplate
 CountryDataTemplate { get; set; }
 public DataTemplate CityDataTemplate {
 get; set; }

 public override DataTemplate
 SelectTemplate(object item,
 DependencyObject container)
 {
 if (item is CountryViewModel){

 return CountryDataTemplate;
 }
 else if (item is CityViewModel){
 return CityDataTemplate;
 }
 return null;
 }
}

We’re using a simple type check to determine which
DataTemplate to return, where each possible
DataTemplate is provided to us via a separate
property. We can then define an instance of our
PlaceDataTemplateSelector in the resources for
our Window:

<local:PlaceDataTemplateSelector
x:Key="PlaceDataTemplateSelector">
 <local:PlaceDataTemplateSelector.
 CountryDataTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="Auto"/>
 </Grid.ColumnDefinitions>
 <TextBlock
 Text="{Binding Name}"
 FontWeight="Bold"
 FontSize="10pt"/>
 <TextBlock
 Grid.Row="1"
 Text="{Binding Population,
 StringFormat=Population {0:0.#}
 million}"
 FontSize="8pt"
 Foreground="DarkGray"/>
 <Image
 Grid.Column="1"
 Grid.RowSpan="2"
 Source="{Binding CountryFlag,
 Converter={StaticResource
 ToNativeConverter}}"/>
 </Grid>
 </DataTemplate>
 </local:PlaceDataTemplateSelector.
 CountryDataTemplate>
 <local:PlaceDataTemplateSelector.

48 DNC MAGAZINE Issue 19 (July-Aug 2015)

 CityDataTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto"/>
 <RowDefinition Height="Auto"/>
 </Grid.RowDefinitions>
 <TextBlock
 Text="{Binding Name}"
 FontWeight="Bold"
 FontSize="8pt"/>
 <TextBlock
 Grid.Row="1"
 Text="{Binding Population,
 StringFormat=Population {0:0.#}
 million}"
 FontSize="8pt"
 Foreground="DarkGray"/>
 </Grid>
 </DataTemplate>
 </local:PlaceDataTemplateSelector.
 CityDataTemplate>
</local:PlaceDataTemplateSelector>

We could also inline the definition within our
ItemsControl, but I usually find it cleaner to
separate any relatively complex elements out into
the resources section, or even other files altogether.
Regardless, we can now modify our ItemsControl
thusly:

<ItemsControl
 ItemsSource="{Binding}"
 ItemTemplateSelector="{StaticResource
 PlaceDataTemplateSelector}"/>

The end result is shown in Figure 10. As you can
see, we’re only showing the flag now if the item
represents a country. In addition, the font size for
the country name is larger than the font size for city
names.

Figure 11 Using ItemTemplateSelector to vary the visuals on a
per-item basis

Of course, the flexibility that we get from
ItemTemplateSelector does not end there. We
could have it choose from any number of templates
based on any programmable factor we desired. That
said, the use of ItemTemplate is far more common
than ItemTemplateSelector. Most of the time
you will know at design-time what the item should
look like, and there’s rarely a need to vary that
appearance dynamically.

Conclusion

You should now have a firm grasp on
ItemsControl fundamentals – how to declare one
in XAML, how to populate it with data, and how to
customize the appearance of items within it. For
some simple scenarios, this is all the knowledge you
need to create a solution. However, there is much
and more to learn beyond what we’ve covered in
this first part of the article. In part 2 of this article,
we’ll dig much deeper and acquire the necessary
skills to utilize ItemsControl in advanced
scenarios

About the Author

kent boogaart

Kent Boogaart is a Microsoft MVP in
Windows Platform Development since
2009. He lives in Adelaide, Australia
with his wife and two kids. You can
find his blog at
http://kent-boogaart.com and follow
him on Twitter @kent_boogaart.

http://kent-boogaart.com

http://www.dotnetcurry.net/s/dncmag-dncfl-july15

50 DNC MAGAZINE Issue 19 (July-Aug 2015)

INTERNET OF THINGS
(IOT), JAVASCRIPT
AND AZURE –
The Way Ahead
Embracing
Open Source
Technologies
for Connected
Devices

With each passing day, we are getting hooked on to an increasing
number of small devices. Besides, the Internet drives our lives like
never before. It is obvious, as well as natural, that the connectivity
of these small devices with the Internet, ultimately, will lead
towards their inter-connectivity; where not only data exchange,
but decision making will be a shared responsibility of these smart
devices. That means the real value of Internet of Things (IoT) does
not lie in just home automation, but rather in the data collection
by these smart devices and analytics, further up the value chain.
In this article, we will explore the possibility of developing
applications for IoT devices that capture data from low-cost
sensors and communicate with real-time scalable services in
Windows Azure – primarily using Open Source Technologies for
devices and Managed Services in Azure.

Connected Devices vs People

In the last decade, we have seen multiple platforms (through

51 www.dotnetcurry.com/magazine

the power of Internet) facilitate all facets of our
communication – email, chat, meetups, networking
or career development. People have more than one
device that allows them to remain connected to the
Internet to access platforms like Facebook, Twitter,
WhatsApp, LinkedIn, Meetup, etc. With the current
trend, soon the number of Internet connected
devices (Internet-of-things, aka IoT) will outnumber
the world population. While this increase in the
number of Internet-connected devices will increase
the network traffic, and will force us to adopt IPv6,
it will also open the door to new opportunities for
developers, security analysts, business houses and
governments.

As developers and architects, it becomes essential
for us to think of IoT from the aspects of scale
of operation, autonomously connected devices,
interoperability between them and seamless
collection of data captured by these IoT devices
into a centralized data store, that can be used for
analytics. This makes the marriage of IoT with the
Cloud, perfect!

Internet of Things and Azure – The
Way Ahead

There are several IoT boards available in the market
and new ones are getting released every month.
Whichever board we choose, the basic process of
getting our board connected to the cloud remains
the same. The 4 essential steps to have our sensors
stream or send data to the cloud are:

1. Connect the device that we have: start with
connecting sensors to our device and device to the
Ethernet/Wireless network.

2. Utilize the Cloud Services: build services (Worker
Roles, Web Roles, Jobs) that run in the cloud and
help in persisting data in one of the data stores like
SQL database, DocumentDB, MongoDB, Blobs, etc.

3. Combine data collected from devices: With
service contracts ready in step 2, we need to ensure
that our device consumes the service contracts and
is able to push the sensor data to cloud services.

4. Generate new insights from data collected: From

the network of IoT devices, the collected data can
be used to feed Big Data platforms (like HDInsight)
for the purpose of analytics.

Typical Tech Stack with Open
Source

Choosing the right platform for IoT is an arduous
task. The platform, while providing an ease of
development, should be extensible to any other
IoT board with little modification, should not
compromise on the execution speed or security and
should execute our code with low-energy factor.
Some of the languages that meet the qualifying
criteria for IoT platforms are - C, CPP and JavaScript.
Choosing a language from these is a matter of
personal preference. For this article, we will
embrace the open-source technology stack and will
explore JavaScript on IoT.

So our tech stack appears like the following:

Whether we use Raspberry Pi, Arduino or Intel
Galileo board, the same tech stack can be used with
the example illustrated in the sections to follow.

Editorial Note: For those who want to try this sample
on RaspberryPi, please note that Pi cannot read analog
input from FS Resistor. Additional analog to digital
converter can be added to original circuit to make
this project work. Please see http://acaird.github.io/
computers/2015/01/07/raspberry-pi-fsr/ for more
information (feedback provided by Shoban Kumar
@shobankr).

http://acaird.github.io/computers/2015/01/07/raspberry-pi-fsr/
http://acaird.github.io/computers/2015/01/07/raspberry-pi-fsr/

52 DNC MAGAZINE Issue 19 (July-Aug 2015)

Smart Garbage Bin

One of the ideas that really fascinates me is
the Smart Garbage Bin that some nations have
adopted. Smart Garbage Bins tend to decrease the
operational cost of monitoring the garbage bins by
intelligent monitoring for waste and recyclables.
There are different versions of Smart Bins available
in market but our rationale (for this article) is -

We need to develop a smart bin that detects if the bin
is full and should report to a centralized cloud service.
Detection of level of garbage in the bin can be done
either by calibrating the weight of garbage or the
height of garbage in the bin.

And as mentioned earlier, we will follow the 4 step
process to accomplish this.

Setting up the IoT board

To begin with, we need the following electronic
components:

• IoT board – let’s take Intel Galileo Gen 2 running
 Yocto (Embedded Linux)
• Force sensitive resistor (FSR) 0.5” or 6”
 (depending upon surface area of bin)
• Resistor – 22K Ω
• LED Matrix 8x16 HT16K33
• Jumper cables
• Breadboard

The wiring of the Intel Galileo Gen 2 board with
FSR sensor and LED matrix needs to be done as
shown below:
This setup will then be placed at the bottom of the
bin so that we can measure the force of the garbage
on the bin.

"

Setting up the Azure Environment

With the tech stack mentioned earlier, we are
aiming to have our IoT device code use Javascript/
jQuery to send the sensor data to Azure Cloud
Services. From an Azure perspective, we have the
option to choose one of the multiple ways available
to receive this data, for e.g. service bus queues/
topics, event hubs, blobs, tables, etc. For this
application, we will use Azure Service Bus Queues.

So as the next step, we need to create a queue on
Azure Management Portal (or using PowerShell
scripts) with name Q.FromSensorRealtimeValue

Once the queue has been created, we can navigate
to the Configure tab and create shared access policy
with the following settings:

• Name: DeviceSharedKey
• Permissions: Send

This will restrict the device to only publish
messages to the queue.

53 www.dotnetcurry.com/magazine

Now we need a persistent store, like SQL Database,
to store messages we receive on this queue.
We need to create a new database using Azure
Management Portal and create one table in this
new database.

The script of the table is as shown here:

CREATE TABLE [dbo].[FSR](
 [ID] [int] IDENTITY(1,1) NOT NULL
 PRIMARY KEY,
 [MeasuredValueF] [numeric](7, 2) NOT
 NULL,
 [DeviceName] [varchar](30) NOT NULL,
 [RecordedAt] [datetime] NOT NULL,
 [ReceivedAt] [datetime] NULL,
 [MessageJSON] [ntext] NULL
)
GO

IoT – Cross-Platform, Open Source
code

Javascript based platform NodeJS gives us the
flexibility to write code regardless of any platform,
providing us with over thousands of npm modules to
do almost everything that we can do with managed
code like C# and Java. So we can write and build
our IoT code using NodeJS and then run it on any
device / platform. For this application, we will
require 4 npm modules to run with NodeJS – os,
azure, galileo-io and johnny-five. If these
modules are not installed on your IoT device, we
can execute the following installation commands:

npm install os
npm install azure
npm install galileo-io
npm install johnny-five

Once the modules have been installed on our IoT
device, we can paste the following code snippet in a
file (say, smartbin.js)

var serviceBusConnectionString =
"Endpoint=sb://iotcomm-ns.servicebus.
windows.net/; SharedAccessKeyName=
DeviceSharedKey;SharedAccessKey=

1OD0KM8EjhNmrnlcSTwFfTBQ7xOs9yALpJSwVjP4sIw=";

var os = require("os");
var azure = require('azure');
var Galileo = require("galileo-io");
var five = require("johnny-five");

var serviceBusService =
azure.createServiceBusService
(serviceBusConnectionString);
console.log('Connected to Azure');

var board = new five.Board({
 io: new Galileo()
});

board.on("ready", function () {

 console.log("Connection Established
 with IoT device");

 var fsr = new five.Sensor({
 pin: "A0",
 freq: 60000
 });

 var matrix = new five.Led.Matrix({
 controller: "HT16K33",
 addresses: [0x70],
 dims: "8x16",
 rotation: 2
 });

 var open = [
 "0000000000000000", "0011110000111100",
 "0100001001000010", "1001100110011001",
 "1001100110011001", "0100001001000010",
 "0011110000111100", "0000000000000000",
];

 var closed = [
 "0000000000000000", "0000000000000000",
 "0000000000000000", "0000000000000000",
 "0000000000000000", "0000000000000000",
 "0000000000000000", "0000000000000000",
];

 var THRESHOLD = 500;
 fsr.scale([0, 1000]).on("data",
 function () {
 if (this.value > THRESHOLD) {
 var message = {
 Hostname: os.hostname(),
 SensorType: "FSR",
 MeasuredValue: this.value,
 RecordedAt: new Date()
 };
 matrix.draw(closed);
 serviceBusService.

54 DNC MAGAZINE Issue 19 (July-Aug 2015)

sendQueueMessage("Q.
 FromSensorRealtimeValue", JSON.
 stringify(message), function (error)
 {
 if (!error) {
 console.log("FSR sent to Azure
 Queue");
 }
 else {
 console.log("Error sending to
 Azure" + error);
 }
 }); //sendQueueMessage
 }
 else {
 matrix.draw(open);
 }
 }); //fsr.on("data")
}); //board.on('ready')

To deploy this code on our IoT device, we can use
FTP tools like FileZilla or use shared folders. Once
we have telnet / putty to the device, we can run our
IoT NodeJS code using

node smartbin.js

The code will connect to Azure using the connection
string and will then initialize the Galileo board
using Johnny-Five libraries.

Johnny-Five is Firmata protocol based open-source
framework, that can be used to write programs on
all Arduino models, Electric Imp, Beagle Bone, Intel
Galileo & Edison, Linino One, Pinoccio, pcDuino3,
Raspberry Pi, Spark Core, TI Launchpad and more with
almost negligible code changes. The library exposes
a board object which raises an event ‘ready’ once the
board has been initialized.

Once the board is ready, at a frequency of every 1
minute (60000 millisecond), analog sensor value
(i.e. force measured by FSR) on the pin A0 will be
determined and the output will be scaled on a
range of 0 to 1000.

When the force value goes beyond 500 (i.e. 50% of
scaled value 0-1000), it will publish a message to
Azure Queue and will dim off the display in LED
matrix.

A sample message on the queue will appear:

{
 "Hostname": "quark09877",
 "SensorType": "FSR",
 "MeasuredValue": 700,
 "RecordedAt": "Wed Apr 29 2015 18:00:10
 GMT+0000"
}

When we expand this solution to run on a network
of IoT devices, we should ensure that the time-
zones in the devices are either set to UTC and are
synchronized, or the Azure Worker Role handles
different time-zones.

Azure – Managed code to collect
IoT data

To collect the data sent by IoT device, we need a
Worker Role process that can pop the message
out of the Service Bus Queue and save it in SQL
database using Entity Framework. A typical Worker
Role requires implementation of 3 methods –
OnStart, Run and OnStop. Our Worker Role
process will initiate the queue connection in the
OnStart method, subscribe to the Queue in Run
method and should close the queue connection in
OnStop method.

public override void Run()
{
 Trace.WriteLine("Starting processing of
 messages");
 _queueClient.
 OnMessage((receivedMessage) =>
 ProcessMessage(receivedMessage));
 CompletedEvent.WaitOne();
}
private void
ProcessMessage(BrokeredMessage
receivedMessage)
{
 try
 {
 DateTime receivedAt = DateTime.UtcNow;

 Trace.WriteLine("Processing Service
 Bus message: " +
 receivedMessage.SequenceNumber.
 ToString());
 Stream stream =
 receivedMessage.GetBody<Stream>();

 StreamReader reader =
 new StreamReader(stream);

55 www.dotnetcurry.com/magazine

 string messageBody =
 reader.ReadToEnd();

 Trace.WriteLine("Message > " +
 messageBody);

 var sensorMessage = JsonConvert.
 DeserializeObject<SensorMessage>
 (messageBody);

 var sender =
 sensorMessage.Hostname.ToUpper();

 if (sensorMessage.SensorType ==
 SensorType.FSR)
 {
 using (var unitOfWork =
 new UnitOfWork())
 {
 decimal measuredValue = -1;
 if (decimal.TryParse(sensorMessage.
 MeasuredValue, out measuredValue))
 {
 var fsr = new FSR();
 fsr.MeasuredValue = measuredValue;
 fsr.DeviceName =
 sensorMessage.Hostname;
 fsr.ReceivedAt = receivedAt;
 fsr.MessageJSON = messageBody;
 fsr.RecordedAt =
 sensorMessage.RecordedAt;
 unitOfWork.Add<FSR>(fsr);
 }
 }
 }

 receivedMessage.Complete();
 }
 catch (Exception ex)
 {
 Trace.TraceError(@"Error saving a FSR
 record due to exception: " +
 ex.ToString());
 receivedMessage.Abandon();
 }
}

The method ProcessMessage gets invoked when
a sensor message is received in the queue. The
BrokeredMessage is designed to support XML
serialization, so we have to retrieve the message
body as a Stream object and parse it to JSON format
using Newtonsoft.Json Nuget package. Once we
have an object of the sensor data, we can store it
in a database (possibly, using Entity Framework or
ADO.NET) for analytics purpose.

The code we just saw can be extended to receive
data from any sensor attached to any IoT device as
far as the device can connect to the Internet.

Beyond reporting measurement

When we are looking forward to building a
production-ready IoT device, we would require more
efforts in reducing the size of device and ensuring
low-battery consumption. For projects like Smart
Garbage Bin, we can use solar energy to power
our device and we could reduce the frequency of
checking the force from 1 minute to 15 minutes.

If we are aiming at creating a network of such IoT
devices, we would require more services than just
storing this data into database. We can explore
several avenues of sending this data to tools like
Azure SQL Data Warehouse, Azure Data Lake or
Hadoop for trend analysis and then have actions
taken based on patterns like peak load time or
recycle duration.

With IoT and Cloud, the possibilities of increasing
automation and building smarter homes, cities and
nations appear to be seamless!

About the Author

punit
ganshani

Punit, a Microsoft .NET MVP and
DZone MVB, is the author of 18
technical whitepapers published
in DeveloperIQ and a book on C
programming. He is an expert at
Application Design & Development,
Performance Optimization and
defining Architecture for hybrid
systems involving Microsoft, Open-
Source and Messaging Platforms. He
is founder of KonfDB platform and
runs a blogging platform Codetails,
organizes .NET sessions in Singapore,
has spoken in various international
forums. He maintains his blog at
www.ganshani.com

http://www.ganshani.com

Using
REST APIs of TFS and
Visual Studio Online

Microsoft has been providing APIs
for Team Foundation Services (TFS)
from the earliest version of TFS (since
Visual Studio 2005). Using these APIs,
we can create TFS clients and also
write event handlers for the events
raised by TFS.

clients in technologies other than
Microsoft.NET; like Java, JavaScript and
many others. For these technologies,
the components that are written in
.NET are not useful.
To assist such programming, Microsoft
has recently published the APIs in
the form of RESTful services that
encapsulate the services of TFS and
Visual Studio Online.

n the early days of TFS, we were
expected to write only Microsoft
.NET clients. We could give
reference to the components
that contained these APIs, and

use the referred classes in the code
to access various TFS services. Over
the years, to facilitate collaboration
between different platforms, we
are now also expected to create

I
This article is co-authored by
Subodh Sohoni and Manish Sharma

https://in.linkedin.com/in/manishsharma30

57 www.dotnetcurry.com/magazine

Using
REST APIs of TFS and
Visual Studio Online

In the case of APIs we used in the early versions of
TFS, whenever we wanted to access a TFS service
programmatically from a client, we had to give
reference to assemblies that encapsulated calls to
webservices or WCF Services of TFS. It also meant
that these assemblies should be present on the
computer, the compatible .NET Framework should
be installed, and the assemblies should be stored
in the Global Assembly Cache. In a nutshell, Team
Explorer had to be installed on that computer.
These prerequisites were quite restrictive.
Since we are now dealing with RESTful services,
we do not have to worry about these conditions. As
long as we can create a HTTP request and send it
over the transport to TFS, and are able to read the
response; we can write a TFS client. It can be using
any technology on any operating system, and on
any device. What sounds particularly interesting is a
case where a TFS client is able to run on a mobile
device.

Accessing Visual Studio Online (VSO) using
such a client that uses RESTful services of TFS,
has one issue that we have to overcome. That
issue is related to security set up by VSO. While
accessing through the browser, the Team Web
Access application which is an ASP.NET application,
uses credentials of the logged-in user. These
credentials are usually the users Microsoft account
credentials like those derived from Hotmail or Live
account. RESTful services of TFS do not support
authentication using such credentials. It either
supports Basic authentication or OAuth. For each
account of VSO, we can enable Basic authentication.

Let us walk through a scenario of creating a VSO
account to enable Basic Authentication.

Enabling Basic Authentication

You can create a VSO account by going to
http://www.visualstudio.com and then select “Visual
Studio Online – Get Started for Free”. This free
account works for up to 5 users. You will need to
login with your Microsoft credentials like Hotmail,
Live etc. After that, you should provide a name that
should be unique to your account.

Now you can create your first team project on VSO.
You can provide a name to that Team Project and
select process template between SCRUM, Agile and
CMMI. For our example, we selected the SCRUM
process template. That defines the work item types
that will be present in the team project. You can
also choose the version control mechanism – TFVC
or Git.

Now that the team project is created, we will go
ahead and add the support for Basic authentication
in our account. To do so, open the Settings section of
the account by clicking the name and then
My Profile on the right top corner. Then in the
profile, select the Credentials tab.

http://www.visualstudio.com/

58 DNC MAGAZINE Issue 19 (July-Aug 2015)

Now enable Alternate credentials by clicking a link
that says ‘Enable alternate credentials’.

Then give the User name and Password of your
choice. This is the one which will be used for Basic
Authentication to your account.

Let us now locate the RESTFul services which we
can call to access VSO services. For each account
the APIs are available from the base URL https://
{account}.visualstudio.com/defaultcollection/_apis/.
From here we can access various services of VSO
like Projects, Work Item Tracking, Version Control,
Test Management, Team Room, Shared Services and
Build services. To get URL of each service API, you
can visit the page https://www.visualstudio.com/
en-us/integrate/api/overview. These services mainly
use GET and PATCH methods.

We will focus on one of the most frequently used
service and the one that requires most custom
client creations, i.e. the Work Item Service. From
our custom applications, we often require to create
a new work item, view the data stored for that
work item and update that work item back in the
VSO. Functionality related to Work Item Tracking is
available from the services under the URL https://
{account}.visualstudio.com/defaultcollection/_apis/
wits/workitems.

Let us now view a simple method to get a work item
using its ID. Obviously it is a GET method with ID as
a querystring parameter. So the UTI will be https://
{account}.visualstudio.com/defaultcollection/_apis/
wits/workitems?id=1&api-version=1.0

As you must have observed, there is no mention of
Team Project name here. That is because work item
ids are unique for Team Project Collection. This GET
method returns a JSON object with the structure as
follows:

{
 "count": 3,
 "value": [
 {
 "id": 1,
 "rev": 1,
 "fields": {
 "System.AreaPath": "TimeS",
 "System.TeamProject": "TimeS",
 "System.IterationPath": "TimeS",
 "System.WorkItemType": "Product
 Backlog Item",
 "System.State": "New",
 "System.Reason": "New backlog item",
 "System.CreatedDate":
 "2015-04-29T20:49:20.77Z",
 "System.CreatedBy": "Manish Sharma
 <manish_sharma123@hotmail.com>",

https://www.visualstudio.com/en-us/integrate/api/overview
https://www.visualstudio.com/en-us/integrate/api/overview

59 www.dotnetcurry.com/magazine

 "System.ChangedDate":
 "2015-05-09T20:49:20.77Z",
 "System.ChangedBy": "Manish Sharma
 <manish_sharma123@hotmail.com>",
 "System.Title": "Customer can sign
 in using their Microsoft Account",
 "Microsoft.VSTS.Scheduling.Effort":
 8,
 "WEF_6CB513B6E70E43499D9FC94E5BBFB784_
 Kanban.Column": "New",
 "System.Description": "Our
 authorization logic needs to allow
 for users with Microsoft accounts
 (formerly Live Ids) - http://msdn.
 microsoft.com/en-us/library/live/
 hh826547.aspx"
 },
 "url": "https://technizer.visualstudio.
 com/DefaultCollection/_apis/wit/
 workItems/1"
 }
}

To send this request to the VSO, we will use the
instance of the class System.Net.Http.HttpClient

HttpClient client = new HttpClient();

This client object can create HTTP Requests, Add
Headers to that request, Send the request to the
known URI and get the Response back.

We will first specify the request header for the
type of message as JSON object. Then we specify
user credentials to authenticate with VSO. The user
credentials are sent in the form of Authorization
header with Basic Authentication. The URL will be as
mentioned earlier.

The instance of this class can now send a request and
it does that asynchronously. That means, we can call
Get() method on the URL as GetAsync() which returns
a result of call as HttpResponseMessage object.

HttpResponseMessage response = client.
GetAsync(Url).Result;

To read the contents of that response message, we
need to use the await keyword.

string responseBody = await response.
Content.ReadAsStringAsync();

The response is a JSON object with the structure
as shown earlier. This response string will have to
be typecast into a Work Item object from where we
will be able to get the field values. For that, we will
write a class that has all the fields or properties
that match the JSON object. We created a class
called WorkItemDetails for that.

public class WorkItemDetails
{
 public string id; public string rev;
 public IDictionary<string, string>
 fields;
 public string Url;

}

So now, we will deserialize the JSON object
and typecast it as WorkItemDetails. We will use
NewtonSoft’s JSON.Net package for that. It has a
JsonConvert class which can deserialize the JSON
object and also typecast it as desired.

WorkItemDetails wiDetails =
JsonConvert.DeserializeObject
<WorkItemDetails>(responseBody);

ID of the work item is obtained directly. But the
fields are returned as a dictionary object. We can get
individual fields by using a loop for key-value pair.

foreach (KeyValuePair<string, string> fld
in wiDetails.fields)
{
 Console.WriteLine(fld.Key + ":\t" +
 fld.Value);
}

The code for this entire functionality will look like
the following:

static async void GetWorkItem(string
username, string password, int WiId)
{
 try
 {
 using (HttpClient client = new
 HttpClient())
 {
 client.DefaultRequestHeaders.Accept.
 Add(new System.Net.Http.Headers.
 MediaTypeWithQualityHeaderValue
 ("application/json"));

60 DNC MAGAZINE Issue 19 (July-Aug 2015)

 client.DefaultRequestHeaders.
 Authorization
 = new AuthenticationHeaderValue
 ("Basic",Convert.ToBase64String(
 System.Text.ASCIIEncoding.ASCII.
 GetBytes(
 string.Format("{0}:{1}", username,
 password))));

 string Url = "https://ssgsonline.
 visualstudio.com/defaultcollection/
 _apis/wit/workitems?id=
 1&api-version=1.0";

 using (HttpResponseMessage response =
 client.GetAsync(Url).Result)
 {
 response.EnsureSuccessStatusCode();
 string responseBody = await
 response.Content.
 ReadAsStringAsync();
 WorkItemDetails wiDetails =
 JsonConvert.DeserializeObject
 <WorkItemDetails>(responseBody);
 Console.WriteLine("Work Item ID:
 \t" + wiDetails.id);

 foreach (KeyValuePair<string,
 string>
 fld in wiDetails.fields)
 {
 Console.WriteLine(fld.Key + ":\t" +
 fld.Value);
 }
 }
 }
 Catch (Exception ex)
 {
 Console.WriteLine(ex.Message);
 }
}

The output looks similar to the following:

To create a new work item, we will use the PATCH
method for this service. PATCH method of this
service accepts a parameter that indicates work
item of which work item type is to be created. The

URL of the method that creates a Task looks like
this:
https://{account}/DefaultCollection/{TeamProject}/_
apis/wit/workitems/$Task?api-version=1.0

In addition to that, this method accepts following
data in the JSON format:

[
 {
 "op": "add",
 "path": "/fields/System.Title",
 "value": "JavaScript implementation
 for Microsoft Account"
 }
]

The value of variable “op” indicates that the field
is to be added, “path” is the name of the field to be
given the value and “value” obviously is the value to
be given to that field. It has to be sent as collection
of fields. The code for creation of work item will
look like this:

static async void CreateWorkItem(string
username, string password)
{
 try
 {
 using (HttpClient client = new
 HttpClient())
 {
 client.DefaultRequestHeaders.Accept.
 Add(new System.Net.Http.Headers.
 MediaTypeWithQualityHeaderValue
 ("application/json-patch+json"));

 client.DefaultRequestHeaders.
 Authorization = new
 AuthenticationHeaderValue
 ("Basic",Convert.ToBase64String(
 System.Text.ASCIIEncoding.ASCII.
 GetBytes(
 string.Format("{0}:{1}", username,
 password))));

 WorkItemPostData wiPostData = new
 WorkItemPostData();

 wiPostData.op = "add";
 wiPostData.path =
 "/fields/System.Title";
 wiPostData.value = "Employee edits
 other employees profile";

61 www.dotnetcurry.com/magazine

 List<WorkItemPostData> wiPostDataArr
 = new List<WorkItemPostData> {
 wiPostData };
 string wiPostDataString =JsonConvert.
 SerializeObject(wiPostDataArr);
 HttpContent wiPostDataContent = new
 StringContent(wiPostDataString,
 Encoding.UTF8, "application/json-
 patch+json");

 string Url =
 "https://ssgsonline.visualstudio.com/
 DefaultCollection/SSGS EMS SCRUM/_
 apis/wit/workitems/
 $Product%20Backlog%20Item?api-
 version=1.0";

 using (HttpResponseMessage response =
 client.PatchAsync(Url,
 wiPostDataContent).Result)
 {
 response.EnsureSuccessStatusCode();
 string ResponseContent = await
 response.Content.
 ReadAsStringAsync();
 }
 }
 }
 catch(Exception ex)
 {
 Console.WriteLine(ex.ToString());
 Console.ReadLine();
 }
}

There are two tasks that we have to do in this case.
One is to create a class that represents the data to
be sent to PATCH the method.

public class WorkItemPostData
{
 public string op;
 public string path;
 public string value;
}

Second is that the HttpClient does not by default
support the PATCH method. For that, we have to
create an extension method ref https://msdn.
microsoft.com/en-IN/library/bb383977.aspx. This
extension method is called PatchAsync() and has
the following code:

public async static
Task<HttpResponseMessage>
PatchAsync(this HttpClient client,

string requestUri, HttpContent content)

{
 var method = new HttpMethod("PATCH");
 var request = new
 HttpRequestMessage(method, requestUri)
 {
 Content = content
 };
 return await client.
 SendAsync(request);
}

To update the work item, we have to use the same
PATCH method but with different parameter. We
have to now send the work item id as the parameter.
The URL for the same is:

https://{account}.visualstudio.com/
defaultcollection/_apis/wit/workitems/{id}?api-
version={version}

The data that will be accepted, is in the JSON format
as shown here:

[
 {
 "op": "replace",
 "path": { string }
 "value": { string or int, depending
 on the field }
 }
]

The “op” variable has the values “add”, “replace”,
“remove” and “test”. The last one i.e. “test” checks if
the operation can be performed successfully or not;
it does not save the work item actually.

Since we are sending a collection of fields, all of
them can be updated in one round trip to server.
The code will look quite similar to the method for
creating work item but with few differences:

static async void UpdateWorkItem(string
username, string password)
{
 try
 {

 using (HttpClient client = new
 HttpClient())
 {

https://msdn.microsoft.com/en-IN/library/bb383977.aspx
https://msdn.microsoft.com/en-IN/library/bb383977.aspx

62 DNC MAGAZINE Issue 19 (July-Aug 2015)

 client.DefaultRequestHeaders.Accept.
 Add(new System.Net.Http.Headers.
 MediaTypeWithQualityHeaderValue
 ("application/json-patch+json"));

 client.DefaultRequestHeaders.
 Authorization = new
 AuthenticationHeaderValue("Basic",
 Convert.ToBase64String(

 System.Text.ASCIIEncoding.ASCII.
 GetBytes(string.Format("{0}:{1}",
 username, password))));

 WorkItemPostData wiPostData =
 new WorkItemPostData();

 wiPostData.op = "replace";

 wiPostData.path =
 "/fields/System.Title";
 wiPostData.value = "Employee edits
 own profile in broser based app";

 List<WorkItemPostData> wiPostDataArr
 = new List<WorkItemPostData> {
 wiPostData };

 string wiPostDataString=JsonConvert.
 SerializeObject(wiPostDataArr);

 HttpContent wiPostDataContent
 = new StringContent(wiPostDataString,
 Encoding.UTF8,
 "application/json-patch+json");

 string Url =
 "https://ssgsonline.visualstudio.com/
 DefaultCollection/_apis/wit/
 workitems/1?api-version=1.0";

 using (HttpResponseMessage response =
 client.PatchAsync(Url,
 wiPostDataContent).Result)
 {
 response.EnsureSuccessStatusCode();
 string ResponseContent = await
 response.Content.
 ReadAsStringAsync();
 }
 }
 }

 catch(Exception ex)
 {
 Console.WriteLine(ex.ToString());
 Console.ReadLine();
 }
}

The only two differences are as follows:

1. Variable “op” has value “replace” as we are
replacing the title of work item

2. URL now changes so that team project name
is removed and instead of work item type we are
sending the ID of work item to be updated.

So far we have been using BASIC authentication
which is useful for applications like Console
Application, Windows Desktop (WinForms)
application, Windows Store Applications, other
technology applications and can also be used
for ASP.NET web applications. One issue in Basic
authentication is that password is sent over the
network in plain text. Although we are using a
secure protocol like https, it still is less secure
compared to any other authentication mechanism
that does not require us to send any password over
the internet. One such mechanism is OAuth.

Using OAuth

OAuth is a service for authentication and
authorization (delegation based authorization)
which follows open standards. Open Standard is
something which is freely adopted, can be freely
used and implemented, and can be extended.

OAuth allows an application to act on user’s behalf
to access server resources without providing their
credentials. OAuth Protocol is designed to work with
HTTP, also OAuth allows web users to log into third
party sites using their available accounts.

Let’s understand Oauth through a simple example.

Suppose you are an end user for a website which
provides contacts service, so that you can store
contacts and later use them to send mails.

63 www.dotnetcurry.com/magazine

Hypothetically, say I wrote an application which can
send greetings to email addresses. You want to use
this application. Now my Application will use your
mailing list to send greetings every morning as per
scheduled. To do so, my application needs access to
the website or the server which has your contacts
stored.

The application I have developed can access
the email address available on the server with
your credentials. If you are willing to share those
credentials, I am more than happy to accept them.
But I am sure, you will never share your credentials
with me or in fact with any third party application
you are using.

So what’s the solution? This is the scenario where
OAuth can help us. It uses one more party, the
known and trusted authorization engine. Let us now
step through the entire scenario.

You register with my application and then give me
authority to send a request to your authentication
provider, so that it will authenticate you and allow
me to use some token as evidence of that. This is a
one time task that you need to do.

Step 1: When you access my application, you are
redirected to that authorization engine. You can
get authorization using that trusted authorization
engine, where I have no access to your credentials
data.

Step 2: That engine vouches for your authenticity.
It gives me some token as evidence of your
authenticity.

Step 3: I will take that token as evidence of your
authentication and send it with my request to the
contacts server.

Step 4: That token will be acceptable to your
contacts server as evidence of your authenticity and
also your trust in my application. It will then provide
your contact list to my application.

Hope this helps you with some OAuth concepts.

Let’s talk about the main components in an OAuth
communication. So in accordance with the example
used above:

1. End User – You

2. Resource – Contacts Server, it is your Resource
Provider.

3. Consumer – Application created by me, it is
Resource Consumer

4. OAuth Provider - Trusted OAuth Providers such as
Microsoft

Let us now extend this example to include VSO
which will be the Resource Provider. I have written
an application that gives you a simple interface
to view work items, create new work items and
edit existing work items. It does so on VSO using
RESTFul API of VSO. So you need to allow access
to my application, so that it can access the VSO
on your behalf, without providing your credentials
to me or my application. My application demands
OAuth Token issued by the trusted authorization
engine, which in this case is Microsoft’s VSO
Authorization Service.

So if my application wants to use OAuth, there are
some steps needed:

1. First step is to register my application
(Consumer) to the OAuth Server (Provider).
Remember this provider also supports your resource
(VSO).

2. When I register my application, I have to specify
what all resources or features my application will
access. These are also known as Scopes. I can
restrict the scope to view work items only or allow
view, create and edit work items. Along with these
details, I also have to specify the Redirect URL. In
the case of regular user accessing this application in
future, this URL will be used by VSO Authorization
Service to redirect the user to this URL.

64 DNC MAGAZINE Issue 19 (July-Aug 2015)

3. Once I complete the above steps, my application
will be registered with the provider and provider
will provide me the following details:

a. App ID – Unique ID for my application
b. Secret Key – Also known as App Secret, will we
used by application

4. Once we have got the details, we will use this
information in the application program to get
OAuth Token from the provider on behalf of end
user, and use the token to Log In and access the
VSO.

Following are the steps taken between End User,
Provider and Consumer to complete the process:

1. End User browses the Consumer application
(Consumer).

2. Consumer Application redirects the request
to Authorization Server (Provider), passing the
App Id, Scope and Redirect URL, through the User
Agent (browser). In the application we used a
login hyperlink which opens the page that has the
following code:

var authorizeUrl = String.
Format("https://app.vssps.
visualstudio.com/oauth2/
authorize?client_id={0}&response_
type=Assertion&state=TestUser&scope=vso.
work_write&redirect_uri={1}",
HttpContext.Application["AppId"].
ToString(),
HttpContext.Application["RedirectUrl"].
ToString());
return new RedirectResult(authorizeUrl);

65 www.dotnetcurry.com/magazine

3. If the user is not logged in to the Authorization
Server (Provider), she/he has to Log In and Authorize
Consumer application to access resources. The user
also has a choice to deny the access.

4. If user allows the access, a single use
authorization code is generated and given back
to the Redirect URL specified by the consumer
Application. In our application, AuthorizeCallback is
the method that accepts mentioned callback with
authorization code.

public async Task<ActionResult>
AuthorizeCallback(string code, string
state)
{
 var token = await GetToken(code,
 false);
 Session["TokenTimeout"] = DateTime.
 Now.AddSeconds(Int32.Parse(token.
 expires_in)); //Token is Valid for
 approx. 14 Mins
 Session["AuthToken"] = token;

 return RedirectToAction("GetWorkItems",
 "Home");
}

5. Now Consumer Application passes the
authorization code, its own App Id and secret to the
authorization server (Provider) and also the Redirect
URL where user will receive the OAuth Token. (This
token may be permanent or timestamp based, which
is valid for a duration)

public async Task<AccessToken>
GetToken(string code, bool refresh)

{
 string tokenUrl = "https://app.vssps.
 visualstudio.com/oauth2/token";
 string appSecret = HttpContext.
 Application["AppSecret"].ToString();
 string redirectUrl = HttpContext.
 Application["RedirectUrl"].ToString();
 string urlData = string.Empty;

 if (refresh)
 {
 urlData = string.Format("client_
 assertion_type=urn:ietf:params:
 oauth:client-assertion-type:jwt-
 bearer&client_assertion={0}
 &grant_type=refresh_token&
 assertion={1}&redirect_uri={2}",
 Uri.EscapeUriString(appSecret),

 Uri.EscapeUriString(code),
 redirectUrl);
 }
 else
 {
 urlData = string.Format("client_
 assertion_type=urn:ietf:param
 s:oauth:client-assertion-type:jwt-
 bearer&client_assertion={0}&grant_
 type=urn:ietf:params:oauth:grant-
 type:jwt-bearer&assertion={1}
 &redirect_uri={2}",
 Uri.EscapeUriString(appSecret),
 Uri.EscapeUriString(code),
 redirectUrl);
 }

 string responseData = string.Empty;
 AccessToken oauthToken = null;

 HttpWebRequest request=
 (HttpWebRequest)WebRequest.
 Create(tokenUrl);

 request.Method = "POST";
 request.ContentType = "application/
 x-www-form-urlencoded";

 using (StreamWriter sw =
 new StreamWriter(await request.
 GetRequestStreamAsync()))
 {
 sw.Write(urlData);
 }

 HttpWebResponse response =
 (HttpWebResponse)(await request.
 GetResponseAsync());

 if (response.StatusCode ==
 HttpStatusCode.OK)
 {
 using (StreamReader
 srResponseReader =
 new StreamReader
 (response.GetResponseStream()))
 {
 responseData = srResponseReader.
 ReadToEnd();
 }

 oauthToken = JsonConvert.
 DeserializeObject<AccessToken>
 (responseData);
 }

 return oauthToken;
 }

66 DNC MAGAZINE Issue 19 (July-Aug 2015)

6. After Validating the details, Authorization Server
(Provider) returns an access token i.e. OAuth Token to
Consumer Application (oauthToken from our earlier
code).

7. Consumer application uses this token to access
resources on behalf of the user, Consumer App has
to send the token with every request to the Resource
Provider, which in our case is VSO

[HttpPost]
public ActionResult
Create(EntityForCreateAndUpdate c)
{
 if (DateTime.
 Parse(Session["TokenTimeout"].
 ToString()) <= DateTime.Now)
 return RedirectToAction("RefreshToken",
 "Account", new { url = Request.Url.
 LocalPath });

 if (ModelState.IsValid)
 {
 ViewBag.Op = "Created";
 var t = helper.
 CreateWorkItemAsync(((AccessToken)
 Session["AuthToken"]),
 c.WorkItemTitle);
 t.Wait();
 return View("Details", t.Result);
 }
 else
 return View();
 }

8. Resource Provider validates the token and returns
the resources needed by the Consumer Application.
In this code, we created a new work item in our team
project.

These steps will be easier to understand using the
following visual:

subodh sohoni

About the Authors

Subodh Sohoni, Team System
MVP, is an MCTS – Microsoft Team
Foundation Server – Configuration
and Development and also is a
Microsoft Certified Trainer(MCT)
since 2004. Subodh has his own
company and conducts a lot of
corporate trainings. He is an M.Tech.
in Aircraft Production from IIT
Madras. He has over 20 years of
experience working in sectors like
Production, Marketing, Software
development and now Software
Training. Follow him on twitter
@subodhsohoni

Some points to remember:

1. The current version of OAuth is OAuth 2.0

2. OAuth 2.0 Tokens can be shared only on secured
channel i.e. HTTPS. It relies on SSAL to provide
encryption.

3. Facebook, Google, Twitter and Microsoft Servers
are some of the OAuth Providers.

Conclusion

Visual Studio Online and TFS 2015 (RC Onwards)
provides RESTful APIs that allow you to extend
the functionality of VSO from your apps and
services. The possibilities of integration via client
applications using any platform or device are
endless; right from iOS, Node.js, Android and our
very own Windows

Download the entire source code from GitHub at /
bit.ly/dncm19-vsotfsrestapi

http:///bit.ly/dncm19-vsotfsrestapi

67 www.dotnetcurry.com/magazine

http://www.dotnetcurry.net/s/dncmag-ticketm-july15

In the last edition (May-June 2015
edition) of the DNC Magazine, I
covered some basics of Object
Oriented Programming (OOP).
As a quick review, I discussed
different types of inheritance,
polymorphism, encapsulation,
loose coupling, and tight cohesion.
Now I want to dive deeper into
good OOP techniques and begin a
discussion on SOLID.

First introduced by Robert
"Uncle Bob" Martin, SOLID is
not new. Uncle Bob simply took

PATTERNS

SINGLE

RESPONSIBILITY

PRINCIPLE

(Software Gardening: Seeds)

concepts that had been around
for years and put them together.
However, he didn’t have them
in SOLID order. We can credit
Michael Feathers for coming
up with the SOLID acronym. So,
what is SOLID? Well, it is five
OOP principles, the first letter of
each spelling out SOLID: Single
Responsibility, Open/Closed, Liskov
Substitution, Interface Segregation,
and Dependency Inversion. Over
the next five issues, I’ll cover
each one of these concepts. While
originally targeting OOP, many of
these concepts apply to non-OOP

languages as well.

The Single Responsibility Principle
(SRP) states that a class should do
one thing and one thing only. After
years of working with OOP code,
I’ve found that many developers
violate this principle all the time.
Yes, we write classes and methods,
but we tend to write one big
method that does something in
a procedural manner rather than
having smaller classes that do one
thing. Here’s some typical code
that demonstrates this.

SOFTWARE GARDENING

http://www.dotnetcurry.com/magazine
http://www.dotnetcurry.com/software-gardening/1125/object-oriented-programming-oops
http://www.dotnetcurry.com/software-gardening/1125/object-oriented-programming-oops

69 www.dotnetcurry.com/magazine

SINGLE

RESPONSIBILITY

PRINCIPLE

(Software Gardening: Seeds)

public class CsvFileProcessor
{
 public void Process(string filename)
 {
 TextReader tr = new
 StreamReader(filename);
 tr.ReadToEnd();
 tr.Close();

 var conn = new
 SqlConnection("server=(local);
 integrated security=sspi;
 database=SRP");
 conn.Open();

 string[] lines = tr.ToString().
 Split(new string[] {@"\r\l"},
 StringSplitOptions.RemoveEmptyEntries);
 foreach(string line in lines)
 {
 string[] columns = line.Split(new
 string[] {","}, StringSplitOptions.
 RemoveEmptyEntries);
 var command = conn.CreateCommand();
 command.CommandText = "INSERT INTO
 People (FirstName, LastName, Email)
 VALUES (@FirstName, @LastName,
 @Email)";
 command.Parameters.AddWithValue("@
 FirstName", columns[0]);
 command.Parameters.AddWithValue("@
 LastName", columns[1]);
 command.Parameters.AddWithValue("@
 Email", columns[2]);
 command.ExecuteNonQuery();
 }
 conn.Close();
 }
}

How many things is this class doing? One? Two?
Three? More? You may be tempted to say one.
That is, the class processes a CSV file. Look at this
class another way. How would you unit test this? It
wouldn’t be easy. What if you had other things like
data validation and error logging? How would you
unit test it then?

The truth is, this class is doing three things:

1. Reading a CSV file
2. Parsing the CSV file
3. Storing the data

Doing lots of things in a class is bad not just

because it is difficult to unit test, but it increases
the odds of introducing bugs. If you change the
code in the Parsing section, and you add a bug, then
Reading and Storing are also broken. And, because
unit tests will not exist or are very complex, it also
takes longer to track down and fix the bug.

In order to fix this, we need to break down the code
into the individual pieces. You may be thinking you
can just have three methods, one for each piece of
functionality. But go back to the definition of SRP. It
says that a class should have only one purpose. So,
we need three classes to do the work. Alright, we’ll
actually have more as you’ll see in a moment.

The way to fix this code is through code refactoring.
Initially, we’ll put each piece of functionality into its
own method.

public class CsvFileProcessor
{
 public void Process(string filename)
 {
 var csvData = ReadCsv(filename);
 var parsedData = ParseCsv(csvData);
 StoreCsvData(parsedData);
 }

 public string ReadCsv(string filename)
 {
 TextReader tr = new
 StreamReader(filename);
 tr.ReadToEnd();
 tr.Close();
 return tr.ToString();
 }

 public string[] ParseCsv(string
 csvData)
 {
 return csvData.ToString().
 Split(new string[] { @"\r\l" },
 StringSplitOptions.
 RemoveEmptyEntries);
 }

 public void StoreCsvData(string[]
 csvData)
 {
 var conn = new
 SqlConnection("server=(local);
 integrated security=sspi;
 database=SRP");
 conn.Open();
 foreach (string line in csvData)

http://www.dotnetcurry.com/software-gardening/1105/code-refactoring

70 DNC MAGAZINE Issue 19 (July-Aug 2015)

 {
 string[] columns = line.Split(new
 string[] { "," },
 StringSplitOptions.
 RemoveEmptyEntries);
 var command = conn.
 CreateCommand();
 command.CommandText =
 "INSERT INTO People (FirstName,
 LastName, Email) VALUES
 (@FirstName, @LastName, @Email)";
 command.Parameters.AddWithValue("@
 FirstName", columns[0]);
 command.Parameters.AddWithValue("@
 LastName", columns[1]);
 command.Parameters.AddWithValue("@
 Email", columns[2]);
 command.ExecuteNonQuery();
 }
 conn.Close();
 }
}

As you can see, things still aren’t quite right. We’re
parsing the CSV file into rows in the ParseCsv()
method, but additional parsing is happening in
the StoreCsvData() method to get each row into
columns. The way to fix that is with a ContactDTO
that stores the data from each row.

The next step is to add the DTO, but I’ll skip a step
and also break out each method into its own class.
But I’m going to think ahead here too. What if
the data doesn’t come in as CSV? What it its XML
or JSON or something else? You solve this with
interfaces.

public interface IContactDataProvider
{
 string Read();
}

public interface IContactParser
{
 IList<ContactDTO> Parse(string
 contactList);
}

public interface IContactWriter
{
 void Write(IList<ContactDTO>
 contactData);
}

public class ContactProcessor
{

 public void
 Process(IContactDataProvider cdp,
 IContactParser cp, IContactWriter cw)
 {
 var providedData = cdp.Read();
 var parsedData =
 cp.Parse(providedData);
 cw.Write(parsedData);
 }
}

public class CSVContactDataProvider :
IContactDataProvider
{
 private readonly string _filename;

 public CSVContactDataProvider(string
 filename)
 {
 _filename = filename;
 }

 public string Read()
 {
 TextReader tr = new StreamReader(_
 filename);
 tr.ReadToEnd();
 tr.Close();
 return tr.ToString();
 }
}

public class CSVContactParser :
IContactParser
{
 public IList<ContactDTO> Parse(string
 csvData)
 {
 IList<ContactDTO> contacts = new
 List<ContactDTO>();
 string[] lines = csvData.
 Split(new string[] { @"\r\l" },
 StringSplitOptions.
 RemoveEmptyEntries);
 foreach (string line in lines)
 {
 string[] columns = line.Split(new
 string[] { "," },
 StringSplitOptions.
 RemoveEmptyEntries);
 var contact = new ContactDTO
 {
 FirstName = columns[0],
 LastName = columns[1],
 Email = columns[2]
 };
 contacts.Add(contact);
 }

71 www.dotnetcurry.com/magazine

 return contacts;
 }
}

public class ADOContactWriter :
IContactWriter
{
 public void Write(IList<ContactDTO>
 contacts)
 {
 var conn = new
 SqlConnection("server=(local);
 integrated security=sspi;
 database=SRP");
 conn.Open();
 foreach (var contact in contacts)
 {
 var command = conn.
 CreateCommand();
 command.CommandText = "INSERT INTO
 People (FirstName, LastName,
 Email) VALUES (@FirstName,
 @LastName, @Email)";
 command.Parameters.AddWithValue("@
 FirstName", contact.FirstName);
 command.Parameters.AddWithValue("@
 LastName", contact.LastName);
 command.Parameters.AddWithValue("@
 Email", contact.Email);
 command.ExecuteNonQuery();
 }
 conn.Close();

 }
}

public class ContactDTO
{
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Email { get; set; }
}

We’re using generic method names of Read, Parse,
and Write because we don’t know what type of data
we’ll get. Now we can easily unit test this code. We
can also easily modify the Parse code and if we
introduce a new bug, it won’t affect the Read and
Write code. Another bonus is that we’ve loosely
coupled the implementation.

So, there you have it. We took what is fairly common
procedural code and refactored it using the Single
Responsibility Principle. Next time you look at a
class, ask yourself if you can refactor it to use SRP.
Applying the S of SOLID will help your code to be

green, lush, and vibrant, and you’re on your way to
having a software garden.

About Software Gardening

Comparing software development to constructing
a building says that software is solid and difficult
to change. Instead, we should compare software
development to gardening as a garden changes all
the time. Software Gardening embraces practices
and tools that help you create the best possible
garden for your software, allowing it to grow and
change with less effort

Craig Berntson is the Chief Software
Gardener at Mojo Software Worx,
a consultancy that specializes in
helping teams get better. He has
spoken at developer events across
the US, Canada, and Europe for
over 20 years. He is the co-author
of “Continuous Integration in .NET”
available from Manning. Craig has
been a Microsoft MVP since 1996.
Email: craig@mojosoftwareworx.com,
Blog: www.craigberntson.com/blog,
Twitter: @craigber. Craig lives in Salt
Lake City, Utah.

About the Author

craig
berntson

http://www.craigberntson.com/blog

72 DNC MAGAZINE Issue 19 (July-Aug 2015)

Why is Windows 10 different?

One OS
To counter the erosion of its once impregnable desktop market and the
growing popularity of Linux servers, Microsoft’s strategy is very simple –
run one version of Windows on everything. So unlike previous versions
of Windows, Windows 10 will be a single operating system that will run
across all devices starting from High End desktops and laptops, all the
way through Tablets and Smart Phones, and even on IoT devices like
Raspberry Pi 2, Intel Galileo etc.

As a developer, this means there are no more multiple packages and
versions. You can maintain one code base and develop apps that run
across a large number of devices running Windows 10.

Build a
WINDOWS 10
UNIVERSAL APP
- First Look Unless you have been living under a rock

for the last couple of months, you probably
already know that Microsoft’s next version
of Windows will be called Windows 10 and
it will be available from July 29th 2015
onwards. I have been using the
Windows 10 preview version in my
Windows Phone and Surface and I am
really excited for the final launch. As a
passionate developer, I would encourage
every fellow developer to try out the
preview version and experience why it is
the right time be a Microsoft Developer.

In this article, we will see what’s new in
Windows 10 and as a developer, how you
can make use of new features to build
apps, or even turn your existing Websites
to Apps (Yes! You heard it right) and use
device features like Calendar, Notifications
etc. At the end of the article, we will also
develop a simple Universal App to see
how it behaves in a Tablet/Desktop and
Windows Phone.

http://windows.microsoft.com/en-in/windows/preview-iso

73 www.dotnetcurry.com/magazine

One developer platform
We are already familiar with Universal apps which
allows us to share code between Windows 8.1 app
and Windows Phone app. Windows 10 introduces a
completely new different way of developing apps
targeting multiple devices and it is called UWP apps
or Universal Windows Platform apps.

This new platform also allows us to easily activate/
deactivate features, in different devices, using
unique APIs that target them. This also means there
is only One Dev Centre to manage our apps and One
Store where users browse and download our apps.

Multiple device families
Windows 10 UWP apps target different variety of
devices and they are grouped into Device families
as shown below.

Grouping these devices makes it easier for us to
identify unique APIs targeting a particular type of
device. Developers can enable their apps to run in
one, or all of the devices and use adaptive code to
activate or deactivate features.

Later in this article, we will see how we can run a
sample app in Windows 10 Tablet, Windows Desktop
and Windows Phone.

API Contracts
API Contracts allow us to check the availability
of a Windows feature during runtime. This makes
it possible to use device specific unique features
and provide a different experience for the user in
different devices, but maintain the same code.

Adaptive UX
Windows 10 allows us to develop apps that use
a single UI that can adapt itself in small or large
screens, without writing any code behind. The new
RelativePanel makes this easy for developers to
implement layouts which is based on relationship
between its child elements. This also means lesser

74 DNC MAGAZINE Issue 19 (July-Aug 2015)

and cleaner XAML code.

Adaptive Visual States allow us to change the UI
based on the changes in size of the window without
writing any extra code.

New controls like calendar, split view etc. have been
introduced and existing controls have been updated
to work well in different screens.

Device Preview toolbar in Visual Studio allows us to
preview the UI in different devices without running
the app. Here is a screenshot of the toolbar.

Adaptive Scaling makes it easy to reuse assets from
other operating system projects like Android and
iOS which will reduce a lot of design time. Common
Input Handling makes it even easier to gather input
from various sources like Touch, Keyboard, Xbox
controller etc. with only a few lines of code.

Hosted Web Apps
If you are a Web Developer, you can convert your
existing Web Apps to a Universal Windows Apps
using this model and even use universal APIs like
camera, calendar, contact list etc. Users will be able
to download your App like any other app from the
store. Any updates done to the website is reflected

immediately in the app. Hosted Web Apps can also
use Cortana to have unique user experience in their
website.

If your website does not have a Windows App, then
this may be a good starting point with very less
code, time and investment.

Cortana
Cortana is now a part of Windows 10 and is more
open for developers. Our App (even Hosted Web
App) can now react to voice commands and even
override the default app behaviour (Imagine
developing a Weather App which will be the default
weather app for Cortana)

Reference Links
Here are some links for you to get started with
Windows 10

1. Windows 10 Inside Preview
2. Download Windows 10 Mobile Insider Preview
3. Visual Studio 2015 RC
4. Microsoft Virtual Academy – A Developer’s Guide
to Windows 10

Sample Windows 10 App
Let us develop a simple Music Player app to see
how the Adaptive UI works in different devices
without writing any extra C# code.

Note: Since this is an introduction article, we are
covering just one feature. In the forthcoming articles,
we will be covering the others.

Step 1: Fire up Visual Studio 2015 RC, create a
new Windows Universal Blank App and name it
MusicPlayer.

http://windows.microsoft.com/en-us/windows/preview-download
https://www.windowsphone.com/en-us/store/app/windows-insider/ed2b1421-6414-4544-bd8d-06d58ee402a5?signin=true
https://dev.windows.com/en-us/downloads/install-dev-tools-visual-studio-2015
http://www.microsoftvirtualacademy.com/training-courses/a-developers-guide-to-windows-10
http://www.microsoftvirtualacademy.com/training-courses/a-developers-guide-to-windows-10

75 www.dotnetcurry.com/magazine

Step 2: Add the following XAML to the main Grid in
MainPage.xaml

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup
x:Name="VisualStateGroup">
 <VisualState x:Name="narrowView">
 <VisualState.StateTriggers>
 <AdaptiveTrigger MinWindowWidth="0"
 />
 </VisualState.StateTriggers>

 <VisualState.Setters>
 <Setter Target="sldProgress.
 Visibility" Value="Collapsed"/>
 <Setter Target="txtEnd.Visibility"
 Value="Collapsed" />
 <Setter Target="txtStart.Visibility"
 Value="Collapsed" />
 </VisualState.Setters>
 </VisualState>

 <VisualState x:Name="wideView">
 <VisualState.StateTriggers>
 <AdaptiveTrigger
 MinWindowWidth="1000" />
 </VisualState.StateTriggers>

 <VisualState.Setters>
 <Setter Target="sldProgress.
 Visibility" Value="Visible"/>

 <Setter Target="txtEnd.Visibility"
 Value="Visible" />
 <Setter Target="txtStart.Visibility"
 Value="Visible" />
 </VisualState.Setters>
 </VisualState>
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>
<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="6*"/>
 <RowDefinition Height="*"/>
 </Grid.RowDefinitions>
 <Image Grid.Row="0" Source="Assets/
 Singer.jpg" x:Name="albumArt"
 Stretch="UniformToFill" Margin="0"
 HorizontalAlignment="Center" />
 <Grid x:Name="grid" Grid.Row="1"
 Background="#f0f1f2" >
 <Grid.RenderTransform>
 <CompositeTransform/>
 </Grid.RenderTransform>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="*"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="Auto"/>
 <ColumnDefinition Width="*"/>
 </Grid.ColumnDefinitions>

76 DNC MAGAZINE Issue 19 (July-Aug 2015)

 <Image Grid.Column="0" Source="Assets/
 Repeat.png" x:Name="btnRepeat"
 Height="25" Stretch="Uniform" />
 <Image Grid.Column="1" Source="Assets/
 Previous.png" x:Name="btnPrevious"
 Height="25" Stretch="Uniform" />
 <Image Grid.Column="2" Source="Assets/
 Play.png" x:Name="btnPlay"
 Stretch="Uniform" Height="50" />
 <Image Grid.Column="3"
 Source="Assets/Next.png"
 x:Name="btnNext" Stretch="Uniform"
 Height="25"/>
 <TextBlock Margin="20,0"
 VerticalAlignment="Center" Grid.
 Column="4" Foreground="#a2a7a9"
 x:Name="txtStart" Text="00:13"
 FontSize="30" />
 <Slider Grid.Column="5"
 Value="50" x:Name="sldProgress"
 VerticalAlignment="Center" Width="450"
 />
 <TextBlock Margin="20,0"
 HorizontalAlignment="Right"
 VerticalAlignment="Center" Grid.
 Column="6" Foreground="#a2a7a9"
 x:Name="txtEnd" Text="00:13"
 FontSize="30" />
 <Image Grid.Column="7" Source="Assets/
 Shuffle.png" x:Name="btnShuffle"
 Stretch="Uniform" Height="25"/>
 </Grid>
</Grid>

In this code, we have added the following

1. A Grid with the following controls:
a. ‘Image’ Controls to display Album Art and other
Media Control Buttons (Images are available in the
sample code)
b. ‘TextBlock’ controls to display start and end time
c. ‘Slider’ control to display the progress

2. We also added two Visual States called wideView
and narrowView to either display or not display the
three controls (txtStart, txtEnd, sldProgress) using
VisualState.Setters property.

3. We then use AdaptiveTrigger and MinWindowWidth
property to enable or disable the state.

Step 3: Press F5 and adjust the width of the app to
see how the UI changes. Here are some screenshots
of the app on different devices.

Tablet

Windows Phone

77 www.dotnetcurry.com/magazine

Desktop

Here’s a link to the gif in case you want to see the
app in action.

In future articles, we will add more controls
and functionality to this app and make it a fully
functional Music Player that looks and behaves
different in different devices.

Windows App Studio

As a side note, I thought of mentioning about the
Windows App Studio, a free web-based tool that lets
anyone create an app with ease. The app studio can
now generate apps for Windows 10, as well as for
Windows 8.1 and Windows Phone 8.1. Give it a shot!

Conclusion

The Universal Windows Platform Apps aims at
changing the way we create apps. Instead of
creating separate apps for different platforms, UWP
apps would run across all major platforms with

minor code changes. With Windows 10, Microsoft
aims at bringing different platforms - PC, tablets,
phones, XBox, Internet of Things (IoT) together
and we sincerely hope that this platform and
the benefits it brings, will create an attractive
ecosystem for Windows 10 devices

shoban kumar

About the Authors
Shoban Kumar is an ex-Microsoft
MVP in SharePoint who currently
works as a SharePoint Consultant.
You can read more about his
projects at http://shobankumar.com.
You can also follow him in Twitter
@shobankr

Download the entire source code from GitHub at

bit.ly/dncm19-windows10apps

http://shobankumar.com
http://bit.ly/dncm19-windows10apps

Service Oriented
Solutions using
MSMQ and WCF

Some systems commonly send a
request to a service (such as WCF
services or even communicate with
the legacy ASMX web services) for
it to do some internal processing
(optionally) and finally insert data
into the database, such as Microsoft
SQL Server. Such systems are very
common and are used almost
everywhere in today’s world of
technology.

These systems, like with anything,
can have a downtime such as server
issues or DB issues and therefore
the request coming from the client
can fail and therefore no data
will be submitted. Sure, you can

implement a cluster of servers to
attain a higher uptime level, but
sometimes this is quite expensive
in terms of cost and resources; as
you would be dealing with different
pieces of software to make it work
together. Moreover to make it work
in such an environment (SQL Server,
Web servers etc…), there will be
a number of moving parts to be
configured and possibly even re-
written/reviewed.

At times, you take a step back and
help but wonder if there is any way
to simply send a message down the
wire without having the systems
always being ON all the time, and

There are many types of
messaging systems and
architectures available
at our disposal. All
encompass one main
objective, which is
to be able to send a
message (or “object”)
from a source to its
destination, wherever
the destination may be.

79 www.dotnetcurry.com/magazine

MSMQ Usage and some
examples
So now that we know what MSMQ is and that we
can use WCF on the .NET Framework to queue
messages and read them from the queue, where
do we use MSMQ? Well the fact is that you can use
it anywhere. Some systems use it to communicate
with one another if there is no way to interact via
services for instance.

Let’s see an example of a fictitious goods and a
shipping company.

Firstly, the systems are setup to be transactional,
so it is guaranteed that if there are multiple
operations on different queues for a message, then
either all or none of the operations are completed
and that nothing is in a "half limbo” state.

Imagine there’s a goods company, “DNC Goods”,
selling goods to customers. Also imagine that the
shipping company “DNC Acme Shippers” is the
shipping company DNC Goods uses to request
and ship orders. Both have MSMQ and Distributed
Transactions installed in their system.

DNC Acme Shippers operates between 9-5pm and
they do not accept any orders beyond this time.
They also do not want to poll a database for orders
which have been approved and are waiting to be
shipped, because it’s expensive to do so and error
prone at times. They however need to agree on a
format/contract that both systems can understand.
This is where WCF is a great candidate to use in
such a system as it is based on a contract binding/
agreement basis.

DNC Acme Shippers always switch on their
systems between these times to receive requests
from external companies such as DNC Goods for
shipping goods. They don’t want to know anything
else outside of these hours.

Now imagine a customer logging onto the DNC
Goods website, placing an order and paying for the
order. The website takes the order request (checks
availability etc…) and when the card payment

also without it having to lose messages or data.
There must be some way of receiving the message
successfully from a client and then be able to
process it at a later time, or when other systems are
up and running.

This is where MSMQ (Microsoft Message Queuing)
comes into play. MSMQ has been in Windows for
a very long time and is also included in some
Windows CE versions. It allows remote computers
to connect and send messages to the destination in
a transactional and non-transactional manner and
allows you to persist these incoming messages to
the disk. So in case of a power failure, the messages
are still on the disk, waiting to be processed the
next time the system is functional.

You do not always have to have the server with
MSMQ up and running. The sender will keep trying
to connect and send messages in the queue until
the destination it is aiming for, is back up and
running; so the client will hold onto the message
until there is a connection. This means that the
message will not be lost but also that it will
automatically be sent when the connection is
established.

This is one of the fundamental things about MSMQ
that has been with us for years and the best part
is that it is available for Free, as it is built into
the OS (but you do need to manually install it). It
has been available since Windows 95 clients and
Windows 2000 for servers with different versions of
MSMQ being evolved overtime. But from Windows
XP (Professional), it has the ability to communicate
via SOAP formatted messages and to be able to
multicast messages.

When WCF was developed by Microsoft on the .NET
Framework, MSMQ was a story that was included
where it would make it easy for developers to
integrate with the system. It also meant that WCF
and MSMQ can be used to provide secure and
reliable transportation of messages which was a
big bonus for WCF developers. So with this, you
can send and also receive messages to and from
the MSMQ queue and also have the ability to read
the messages from the queue and start processing
them.

80 DNC MAGAZINE Issue 19 (July-Aug 2015)

is approved almost immediately, it will create a
message object which will contain the order details
and finally send this off to DNC Acme Shippers.

DNC Goods website does not need to know the
technical implementation detail such as how
the communication channel works or even if it
is between the business hours that DNC Acme
Shippers are operating on. All the website needs to
do is place the MSMQ message on the queue – that
is literally it.

MSMQ will then try to connect to the destination
(which is provided in the MSMQ message object)
and send the message. If it cannot connect, it
will try again later. MSMQ takes care of this
communication for us, amongst other things that is
exposed in the MSMQ message object.

This system provides us the solution for the
requirements needed for DNC Acme Shippers where
they only want orders for shipping between their
business hours and that the message they expect is
of a certain agreed standard.

The DNC Goods website processes the order and
by executing its own internal logic, processes
the card transaction. Finally once the transaction
is approved, it creates a message ready to be
submitted to DNC Acme Shippers for shipping. The
shipping company will take care of the order and
email the customer when the goods are shipped.

Setup MSMQ on your System
To setup the system, we will not get into the
technical details about setting up a full network
architecture, but instead focus more on the software
configuration and assume that it is a simple direct
end to end connection.
The technologies used for this specific example are
as follows:

- Windows 7 Ultimate
- MSMQ (installed from control panel)
- Visual Studio 2012 (non express SKU)
- WCF
- .NET Framework 4.0

- C#

We install MSMQ (Message Queuing) via “Programs
and Features/Turn on or off Windows Features” and
install with HTTP Support and Multicasting support.
We also install Distributed Transactions.

This is all that is needed for DNC Goods.

For DNC Acme Shippers, we need to create a queue,
which is transactional. To do so, open the MMC
console, and go to File > Add/Remove Snap-ins and
select “Computer Management” from the available
snap-ins:

Figure 1. Setting up MSMQ

Press “Add” and then on the dialog screen that
appears, press “OK” to connect to the local computer.

Expand the “Services and Applications” and then
“Message Queuing”. You should see the following:

Figure 2. Message Queueing

In the Private Queues, we will create a transaction

queue called “ShippingOrders”. Right click on the
Private Queues and select “New > Private Queue”.
Type “ShippingOrders” in the Queue name and check
the “Transactional” box and press OK:

Figure 3. Creating a transactional MSMQ

Now that we have MSMQ installed with a
transactional queue created, we need to write some
client code which will place an order to the queue.
We first need to create a common project which has
our contract agreement class “Order” which will be
created and placed on the queue.

Create a new project in Visual Studio (using .NET
3.5 or higher) named “Acme.Shared.Contracts” and
create a class named Order. Add a reference to
“System.Runtime.Serialization” which is a .NET
assembly and will expose the attributes we need
to apply to the class and properties, in order to
serialize the object to and from the MSMQ using
WCF as the communication protocol.

The following code will be written as a data
contract:

using System;
using System.Runtime.Serialization;

namespace Acme.Shared.Contracts
{
 [DataContract]
 public class Order
 {
 public Order()
 {
 }

 [DataMember(IsRequired = true)]
 public int OrderID { get; set; }

 [DataMember(IsRequired = true)]
 public DateTime SubmittedOn { get;
 set; }

 [DataMember(IsRequired = true)]
 public string ShipToAddress { get;
 set; }

 [DataMember(IsRequired = true)]
 public string ShipToCity { get; set;
 }

 [DataMember(IsRequired = true)]
 public string ShipToCountry { get;
 set; }

 [DataMember(IsRequired = true)]
 public string ShipToZipCode { get;
 set; }

 }
}

In order to simulate the messages being sent
(and received), we first create a simple application
(Console/Winforms/WPF) which will create a
message and place it on the MSMQ named
“ShippingOrders”. Be aware that this is not
production quality code but simply to illustrate how
messages can be sent and received.

Create a new project named “Acme.Dispatcher”
and add a reference to the “System.Messaging”
.NET assembly, which gives us access to the
MSMQ classes to interact with, and the “System.
Transactions” assembly which gives us access to the
TransactionScope class. Also add a project reference
to the “Acme.Shared.Contracts” project, as it contains
the data contract we will be using to create and
send the Order message. The order message will be
sent to the transactional private queue we created
above “ShippingOrders”.

The code shown here is what is used to create a
sample Order and place it on the queue:

namespace DNCDispatcher
{
 class Program
 {
 static void Main(string[] args)

82 DNC MAGAZINE Issue 19 (July-Aug 2015)

 {
 // create a fake order, for
 simulation:
 var anOrder = new Order { OrderID =
 1, ShipToAddress = "123 Abc avenue",
 ShipToCity = "DNC", ShipToCountry =
 "A country", ShipToZipCode = "12345",
 SubmittedOn = DateTime.UtcNow };

 // create a MessageQueue to tell MSMQ
 where to send the message and how to
 connect to it
 var queue = new
 MessageQueue(ConfigurationManager.
 AppSettings["MessageQueuePath"]);

 // Create a Message and set the body
 to the order object above
 var msg = new Message { Body =
 anOrder };

 // Create a transaction
 using (var ts = new
 TransactionScope
 (TransactionScopeOption.Required))
 {
 queue.Send(msg,
 MessageQueueTransactionType.
 Automatic); // send the message
 ts.Complete(); // complete the
 transaction
 }

 Console.WriteLine("Message Sent");
 Console.ReadLine();
 }
 }
}

The “MessageQueuePath” is a setting pulled from
the app.config file which contains the queue path
for MSMQ to know where to send the message to.
The app.config setting looks like as follows:

<appSettings>
 <add key="MessageQueuePath"
 value="FormatName:Direct=TCP:xx.xx.xx.
 xx\private$\ShippingOrders"/>
</appSettings>

The “FormatName” is used when sending messages
directly to a computer or over the internet, or
reading them while operating in a domain or
workgroup environment, or even in an offline
mode. It is also used to send messages when
authentication, routing and encryption is not

needed and in this setup, it is not needed. For more
information about FormatName, please visit the
MSDN resource here: https://msdn.microsoft.com/
en-us/library/ms700996(v=vs.85).aspx

We are specifying that we want to send the
message to the remote computer. The “xx.xx.xx.
xx” should be replaced with the IP Address you are
intending on sending the message to.

When you run the simulator, you will see that the
message was sent, and when you pull up MSMQ in
Microsoft Management Console (MMC), you will see
that the number of messages will be set to “1”:

Figure 4. Message waiting

Now we know our order is waiting to be read, we
can now create a final project which will be the one
to read the message from MSMQ. To do this, for this
exercise, let us create another Console/Winforms/
WPF project named “Acme.OrderReader” and add
the “Acme.Shared.Contracts” project reference. Also
add the “System.Transactions”, “System.Messaging”,
“System.Runtime.Serialization” and “System.
ServiceModel” .NET assembly references for us to be
able to process the incoming messages from MSMQ
through WCF.

In order for MSMQ to dispatch the message to
the reader application through WCF (since WCF
is the one to read the messages from the queue),
WCF needs to know the type of the object we are
expecting so that it can deserialize it and finally
dispatch it to our application for processing. To do
so, we use the ServiceKnownType attribute.

Let us create an interface called
“IOrderInboundMessageHandlerService” and
provide a single method that the implementer must
implement:

namespace Acme.OrderReader.Interfaces
{
 [ServiceContract]
 [ServiceKnownType(typeof(Order))]
 public interface
 IOrderInboundMessageHandlerService
 {

https://msdn.microsoft.com/en-us/library/ms700996(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms700996(v=vs.85).aspx

83 www.dotnetcurry.com/magazine

 [OperationContract(IsOneWay = true,
Action = "*")]
 void ProcessIncomingMessage
 (MsmqMessage<Order>
 incomingOrderMessage);
 }
}

Following this interface, let’s create a class called
“OrderInboundMessageHandlerService” which
implements this interface and set the ConcurrencyMode
enum to “Multiple” so it can process multiple incoming
messages. You also have the option of creating a single
context service or multiple. This is a design choice that
you must decide upon depending on the environment.
For this purpose, we will make it “Multiple”. As for
the transaction behaviour, we will autocomplete the
transaction and ensure that a transaction scope is
required, since the queue is transactional. With these
configuration parameters in mind, the class will look
similar to the following:

namespace Acme.OrderReader
{
 [ServiceBehavior(ConcurrencyMode =
 ConcurrencyMode.Single,
 InstanceContextMode
 =InstanceContextMode.Single,
 ReleaseServiceInstanceOnTransactionComplete
 = false)]

 public class
 OrderInboundMessageHandlerService :
 IOrderInboundMessageHandlerService
 {
 #region
 IOrderInboundMessageHandlerService
 Members

 [OperationBehavior
 (TransactionScopeRequired = true,
 TransactionAutoComplete = true)]
 public void
 ProcessIncomingMessage
 (MsmqMessage<Order>
 incomingOrderMessage)
 {
 var orderRequest =
 incomingOrderMessage.Body;
 Console.WriteLine(orderRequest.OrderID);
 Console.WriteLine(orderRequest.
 ShipToAddress);
 Console.WriteLine(orderRequest.
 ShipToCity);
 Console.WriteLine(orderRequest.
 ShipToCountry);

 Console.WriteLine(orderRequest.
 ShipToZipCode);
 Console.WriteLine(orderRequest.
 SubmittedOn);
 }
 #endregion
 }
}

As you can see, with the parameters we defined
above, we should now be able to receive the
message and for the purpose of this exercise,
display the details about the order on the console.
In reality, you would process the message to the
business requirements definition (i.e check the
order does not already exist in the system or insert
into the database or print out shipping labels etc…).

We now need to host the reader so the reader
can read and process incoming messages
placed on the queue. To do this, we use the
WCF ServiceHost object and then host the
OrderInboundMessageHandlerService like so:

using System;
using System.ServiceModel;

namespace Acme.OrderReader
{
 class Program
 {
 static void Main(string[] args)
 {
 ServiceHost host = new
 ServiceHost(typeof(
 OrderInboundMessageHandlerService));
 host.Faulted += host_Faulted;
 host.Open();
 Console.WriteLine
 ("The service is ready");
 Console.WriteLine
 ("Press <ENTER> to terminate the
 service");
 Console.ReadLine();
 if (host != null)
 {
 if (host.State ==
 CommunicationState.Faulted)
 {
 host.Abort();
 }
 host.Close();
 }
 }

 static void host_Faulted(object

84 DNC MAGAZINE Issue 19 (July-Aug 2015)

 sender, EventArgs e)
 {
 Console.WriteLine("Faulted!"); //
 Change to something more sensible
 – this is just an example showing
what happens when the host has
faulted.
 }
 }
}

We are getting very close to completing our project.
The final step is to setup the application so that it
will open the WCF service host and start reading
the messages from the MSMQ. To do so, we use the
ServiceHost class. But first, we must configure WCF
settings in the config file (app.config). We simply need
to tell WCF the details about the service such as A B
C (Address, Binding, Contract). The following is what
we would enter in the config file:
<system.serviceModel>
 <behaviors>
 <endpointBehaviors>
 <behavior name=
 "IncludeExceptionDetails">
 <callbackDebug
includeExceptionDetailInFaults=
 "true" />
 </behavior>
 </endpointBehaviors>
 </behaviors>

 <services>
 <service name="Acme.OrderReader.
 OrderInboundMessageHandlerService">
 <endpoint address="msmq.
 formatname:DIRECT=OS:
 .\private$\ShippingOrders"
 binding="msmqIntegrationBinding"
 bindingConfiguration=
 "IncomingMessageHandlerBinding"
 contract="Acme.OrderReader.Interfaces.
 IOrderInboundMessageHandlerService">
 </endpoint>
 </service>
 </services>
 <bindings>
 <msmqIntegrationBinding>
 <binding
 name="IncomingMessageHandlerBinding"
 closeTimeout="00:30:00"
 receiveTimeout="01:00:00"
 retryCycleDelay="00:00:10"
 receiveRetryCount="0"
 exactlyOnce="true"
 maxRetryCycles="3"
 receiveErrorHandling="Move">

 <security mode="None"/>
 </binding>
 </msmqIntegrationBinding>
 </bindings>
 </system.serviceModel>

Notice that the endpoint address is set to look
at the local computer MSMQ – this should once
again, be changed to the machine where the queue
is located on the receiving end. For this exercise,
we are sending to a remote computer and the
OrderReader is running directly on the machine
where the messages are being sent to, thus the
reason to read the messages from the local MSMQ
endpoint.

We are now finally ready to run the solution. First,
fire up the OrderReader app and then secondly fire
up the Dispatcher app. The dispatcher will send
the message and the OrderReader will almost
immediately read the incoming message and
display the results in the console:

Figure 5. Order sent and received

As you can see, the message was sent and the order
was received.

Whilst this solution works – in the real world,
things differ slightly. You can have messages that
are invalid and the application not expecting it,
therefore it would be known as a poison message
and MSMQ will automatically place it in its own
queue because the reader is unable to process the
message (i.e it cannot deserialize it and does not
know its type) and terminate the transaction.

You can allow the receiver (OrderReader) to handle
these poison messages if you wish within the code.
For more information, please visit the following
MSDN resource. https://msdn.microsoft.com/en-us/
library/aa395218(v=vs.110).aspx

https://msdn.microsoft.com/en-us/library/aa395218(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/aa395218(v=vs.110).aspx

85 www.dotnetcurry.com/magazine

Conclusion

DNC Goods and DNC Acme Shippers now have a
solution that both parties are satisfied with, where
orders are sent and are only received by DNC Acme
Shippers when they open for business during their
own business hours. The solution shows us that
the technologies are readily available at very little
cost, generally speaking. We can create a reasonably
straight forward service oriented solution that
meets the demands of businesses, using these
existing and ever evolving technologies

About the Author

ahmed
ilyas

After leaving Microsoft, Ahmed
Ilyas ventured into setting up a
consultancy company, Sandler Ltd,
offering the best possible solutions
for a magnitude of industries and
providing real world answers to those
problems. He uses the Microsoft stack
to build these solutions and has
been able to bring in best practices,
patterns and software to his client
base. This resulted in him being
awarded the MVP title thrice in C#
by Microsoft for “providing excellence
and independent real world solutions
to problems that developers face”.

His reputation and background has resulted in him having a large
client base in the UK and Sandler Software (USA) now includes
clients from different industries from medical to digital media and
beyond.

Download the entire source code from GitHub at

bit.ly/dncm19-wcfmsmq

http://bit.ly/dncm19-wcfmsmq
http://www.dotnetcurry.net/s/dncmag-dnchf-july15

W
ha

t’s
 n

ew
 in

TY
PE

SC
RI

PT
 1

.4
 A

N
D

 1
.5

 B
ET

A As JavaScript’s popularity continues to grow and a
lot of exciting new features are added to its next
versions, compile-to-JavaScript languages have
a lot of challenges to face. TypeScript, the typed
superset of JavaScript from Microsoft has taken
up these challenges and continues adding more
features to the language to make developers more
productive. At the time of this writing, though the
language supports comparatively lesser number of
features of the next version of JavaScript, the team
has promised that it will have full support for ES6
by the time TypeScript 2.0 is released. In addition,
popularity of the language got a big push after the
AngularJS team chose to use TypeScript as their
language of development over AtScript.

One of the key reasons why TypeScript started
gaining a lot of popularity, is it stays true to
ECMAScript standards. This focus on JavaScript
makes the language look as close to JavaScript
as possible and makes developers still appreciate
the syntax of JavaScript. In the recent versions of
TypeScript (1.4 and 1.5 beta), the language got
some new features that loosens the type system to
make it appear a bit more dynamic and even adds
some new features of EcmaScript (ES) 6 & 7. We will
explore these features in this article.

Using TypeScript 1.5 Beta
The latest version of Visual Studio 2015 CTP
installs TypeScript 1.4 on the machine. Installer for
TypeScript 1.5 is not yet available as of this writing.
It is available through NPM. So you can install it
globally using the following NPM command:

• npm install –g typescript

If you have already installed an older version of
TypeScript using NPM, you can update it using the
following command:

• npm update –g typescript

Union Types
Because of the optional type system in TypeScript,
it was not so easy to define a function that takes

87 www.dotnetcurry.com/magazine

different types of parameters across different
invocations. It was also a challenge to write type
definitions for such functions, as we needed to
write a declaration for each possible invocation.
TypeScript adds a new feature in 1.4 called Union
Types. This feature allows us to specify multiple
types for the same argument without having to
write multiple declarations for the same function.

Let us say I have to write a function that accepts
either a number, or an array of numbers and returns
square of the number, or array of squares depending
on the input passed in. Following is the function in
TypeScript:

function square(nums: number |
number[]): number | number[]{
 if(typeof nums === 'number'){
 return nums * nums;
 }
 else{
 var squares = [];
 nums.forEach(num => {
 squares.push(num*num);
 });
 return squares;
 }
}

See the type of argument mentioned in the
function. It says, the input can be either a number or,
an array of numbers. Similarly, the function returns
two types of values, so the return type is also
specified in a similar way.

This feature eases the job of writing type
declarations for existing libraries. For example,
jQuery’s find() method can be called by passing a
string selector, an element or a jQuery object to it. If
you see the type declaration for this method in the
Definitely Typed project (http://bit.ly/1RImmxS), it
has three declarations. They are:

find(selector: string): JQuery;
find(element: Element): JQuery;
find(obj: JQuery): JQuery;

Using the Union types, it can be replaced with a
single declaration, as shown here:

find(seo: string | Element | JQuery):
JQuery;

Type Aliases
While writing considerably larger apps using
TypeScript, it is natural to have the application
divided into several modules and each module
depending on other modules to achieve its
functionality. If a class or an interface defined in a
module has to be used a number of times in the
importing module, we will have to keep referring to
the types using module’s reference again and again.
Also some types imported from another module
may have longer names, or you may want to refer
to these types with different names. Thankfully,
TypeScript 1.4 adds a feature called Type Aliases,
which allows us to create alias names for a type.

Say I have a module with some interfaces
representing contracts to define different types of
cars. To keep it simple, I included two types of cars
here, cheap and costly. Following is the module:

module Cars{
 interface ICar{
 manufacturer: string;
 price: number;

 drive(speed: number);
 }

 export interface ICheapCar extends
 ICar
 {
 mileage: number;
 }

 export interface ICostlyCar extends
 ICar
 {
 length: number;
 width: number;
 }
}

The only way we know to refer to these interfaces, is
by using the module name.

var car1 : Cars.ICheapCar;
var car2 : Cars.ICostlyCar;

Using this syntax over and over to refer to
these types would tire us. So, let’s create aliases.
Following snippet creates the aliases:

https://github.com/borisyankov/DefinitelyTyped/blob/master/jquery/jquery.d.ts

88 DNC MAGAZINE Issue 19 (July-Aug 2015)

type IEconomicCar = Cars.ICheapCar;
type ILuxuriousCar = Cars.ICostlyCar;

Now you can use the alias names to refer to the
interfaces.

var car1 : IEconomicCar;
var car2 : ILuxuriousCar;

It is also possible to create types on primitive types.
Here are some examples:

type setOfChars = string;
type numericValues = number;

We can create aliases on mixed-generic types as
well. Here’s an example:

type CarCollection = Array<IEconomicCar
| ILuxuriousCar>;

The type CarCollection can be used to store a list
of objects of both IEconomicCar and ILuxuriousCar
types.

The typeof and instanceof operators can be applied
on variables defined using type aliases to check
their type before performing an operation. For
example, the following snippet defines two classes
and a collection to hold objects of these types:

class Farmer{
 startFarming(){
 console.log("Started. Don't disturb
 me for 3 hours from now.");
 }
}

class Carpenter{
 buildADoor(){
 console.log("Will start today. Meet
 me after 10 days.");
 }
}

type WorkersCollectionType =
Array<Farmer | Carpenter>;
var workers: WorkersCollectionType = [];
workers.push(new Carpenter());
workers.push(new Farmer());
for(var count = 0; count<workers.length;
count ++){
 if(workers[count] instanceof
 Carpenter){

 workers[count].buildADoor();
 }
 else{
 workers[count].startFarming();
 }
}

The loop that iterated over the items in the
collection checks for the type of the instance, before
it performs an operation.

Better Generics and
Generic Type Inference
Because of alias types, arrays infer types from the
value assigned to them during declaration. For
example, consider the following snippet:

var arr = [10, new Carpenter()];
arr.push(161);
arr.push("Ravi"); //not allowed
arr.push(new Carpenter());

As the array is initialized with a number and an
object of Carpenter type, type of the variable is
assigned as an array of a union type. So the first
statement is similar to:

var arr2:Array<number | Carpenter> =
[10, new Carpenter()]

As string is not compatible with any of these types,
an attempt to insert a string value into the array
results in an error.

Generics have been made stricter and they restrict
assigning values of incompatible types on two
assignment targets declared using the same generic
notation. Following is an example of strict generics:

function add<T>(first: T, second: T) : T{
 if(typeof first === 'number' || typeof
 first === 'string') {
 return first + second;}
 return null;
}
console.log(add(1, 25)); //26
console.log(add("firstName","lastName"));
//firstNamelastName
console.log(add([1,2,3],[3,4,5])); //
null
console.log(add(1, "Ravi")); //Error

89 www.dotnetcurry.com/magazine

Const Enums
We use enums to store a list of fixed values and
these values are collectively used to represent a set
of values. On compilation, TypeScript generates an
object for the enum and the values are assigned to
properties in the object.

When marked with the keyword const, the compiler
doesn’t create an object for the enum. So it is not
allowed to access the const enum as an object in
TypeScript. We can use the values alone and the
compiler replaces all usage occurrences with their
corresponding values.

const enum Days {Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday,
Saturday};
var days = Days; //not allowed
console.log(Days.Monday); //0

ES6 Features
As I stated in the introduction of my first article on
ES6 (http://www.dotnetcurry.com/javascript/1090/
ecmascript6-es6-new-features), ES6 got a lot
of features from some compile-to-JavaScript
languages and from popular libraries. ES6 got some
of its features like classes, arrow functions, some
part of module system and a couple of others from
TypeScript as well. So some of the ES6 features are
already available in TypeScript. The team started
implementing features of ES6 into the language
and TypeScript 1.5 is going to have a decent support
for ES6.

ES6 output mode

By default, TypeScript code gets converted to ES5
or, ES3 version of JavaScript. Now we can transpile
TypeScript code to ES6 code using a compilation
option. Use the following command:
• tsc --target ES6 file.ts

Let and Const

The JavaScript we use today doesn’t have block

level scoping. Any variable declared using the
var keyword at any level in a function, is hoisted
at the beginning of the function. ES6 adds block
level scoping by introducing a new keyword, let.
TypeScript has got support for this keyword now.
The let keyword can be used to declare intermediate
variables that store temporary values, like counter
in for loop. Here is an example:

for(let c = 0; c< 10; c++){
 console.log(c*c);
}

The const keyword in ES6 is used to define scoped
constants. TypeScript now supports this keyword.
Any attempt to reassign value of a constant would
result in an error. The following function uses the
const keyword:

function findArea(radius: number):
number{
 const pi=3.4159;
 return pi * radius * radius;
}

console.log(findArea(20));

Template Strings
Appending values to strings in JavaScript has never
been enjoyable. ES6 adds support for template
strings to make it easier to add values of variables
to a string and to easily assign multi-line values
to strings. TypeScript 1.4 adds this feature to the
language. The following snippet uses this feature:

var person={
 firstName:'Ravi',
 lastName:'Kiran',
 occupation:'Author'
};
console.log(`${person.firstName}
${person.lastName} is a/an ${person.
occupation}.`);
var template=`<div>
 Some text goes here...
</div>`;

Destructuring
Destructuring is a feature added to JavaScript in

http://www.dotnetcurry.com/javascript/1090/ecmascript6-es6-new-features
http://www.dotnetcurry.com/javascript/1090/ecmascript6-es6-new-features

90 DNC MAGAZINE Issue 19 (July-Aug 2015)

ES6 that saves a lot of time in extracting values
out of arrays and objects. It defines a shorter way
of assigning the values from arrays and objects
into variables. TypeScript 1.5 adds the support of
destructuring to the language and it gets transpiled
to its best possible alternative in the target version.

Following are a couple of examples of
destructuring:

var numbers=[20, 30, 40, 50];

var [first, second, third] = numbers;
//first: 20, third: 40

var topic = {name:'ECMAScript 6',
 comment: 'Next version of JavaScript',
 browserStatus: {
 chrome: 'partial',
 opera:'partial',
 ie: 'very less',
 ieTechPreview: 'partial'
 }};

var {name, browserStatus:{opera}} =
topic; //name: 'ECMAScript 6', opera:
'partial'

Modules
Support of modules is one of the most important
features added to ES6. Addition of modules makes
it easier to structure the code and manage the
dependencies easily without need of an external
library. As the feature is not yet implemented
by browsers, we need to rely on an existing
module system like AMD or CommonJS today to
manage JavaScript dependencies in production
environments. Though TypeScript has its own
module system, it now embraces the module system
of ECMAScript 6 and provides a way to transpile the
ES6 modules into either AMD or, CommonJS system.

If you are not already familiar with the syntax and
usage of ES6 modules, check the article on
ES6 modules on DotnetCurry (http://www.
dotnetcurry.com/javascript/1118/modules-in-
ecmascript6).

Consider the following code. It is a piece of
TypeScript code using the export statement of ES6

to export objects out of the module.

class Employee{
 id: number;
 name: string;
 dob:Date;

 constructor(id, name, dob){
 this.id = id;
 this.name=name;
 this.dob= dob;
 }

 getAge(){
 return (new Date()).getFullYear() -
 this.dob.getFullYear();
 }
}
var [x, y] = [10, 20];

function getEmployee(id, name, dob){
 return new Employee(id, name, dob);
}

export {Employee, getEmployee};

Say, the file is saved as employee.ts. Following
command would transpile the module into a
CommonJS module:

tsc employee.ts --module commonjs
--target ES5

Now you can run the browserify command over the
generated file and load the file in a browser. To use
browserify, you need to install the NPM package of
browserify globally. The following command does
this for us:

npm install -g browserify

Here is the browserify command to create a bundle
file containing the above file:

browserify employee.js > bundle.js

The bundle file is a self-contained file and it can
be loaded into the browser without importing any
other external scripts.
You may check the official site of browserify (http://
browserify.org/)if you want to learn more.

As you can see, the command accepts the module

http://www.dotnetcurry.com/javascript/1118/modules-in-ecmascript6
http://browserify.org/

91 www.dotnetcurry.com/magazine

flag in addition to the target flag discussed earlier.
Using this flag, the TypeScript file can be transpiled
into either a CommonJS module or, an AMD module.

Decorators (ES7)
Decorators are not added to the specification of
ES6; instead they are a part of the ES7 spec. Using
decorators, a JavaScript object can be extended
declaratively. This feature is already used in
Angular 2.0 and in Aurelia (http://aurelia.io/). These
frameworks use this feature extensively to achieve
things like Dependency Injection, making a class
a component, to make a field bindable, and many
more.

Though the name sounds like extra burden, defining
and using a decorator is fairly simple. A decorator is
a function that accepts the object to be decorated,
name of the property and object descriptor. It has
to be applied on a target using the “at the rate” (@)
symbol. Following is the signature of a decorator
function:

function decoratorFunc(target, name,
descriptor){

 //body of the function
}

The following snippet defines and uses a decorator:

function nonEnumerable(target, name,
descriptor){
 descriptor.enumerable = false;
 return descriptor;
}

class Person {
 fullName: string;

 @nonEnumerable
 get name() { return this.fullName; }

 set name(val) {
 this.fullName = val;
 }

 get age(){
 return 20;
 }
}

var p = new Person();
for(let prop in p){
console.log(prop);
}

As the property name has been made non
enumerable using a decorator, the “for…in” loop
prints the property age alone on the console.

Decorator Metadata
Metadata Reflection API is another proposed feature
for ES7 (link to proposal - http://bit.ly/1SUthGZ).
This API is designed to be used along with the
decorators to implement features like Dependency
Injection, perform runtime type assertions and
mirroring. The feature is already in use in Angular 2
for DI and to declare components.

To use this feature, we need the polyfill of
Reflection API. It can be installed using the
following NPM command:

npm install reflect-metadata

We can either import this library into the TypeScript
file using the ES6 module syntax or, we may even
load this script in the browser before the script
using it, loads to make the API available.

Now we can start defining the metadata
annotations using this API and start using them.
Following is a decorator that uses the metadata API:

function Inputs(value: Array<string>) {
 return function (target: Function) {
 Reflect.
defineMetadata("InputsIntoClass", value,
target);
 }
}

This is a simple decorator that accepts the Type
of data passed into a class or, a function. One can
extend this idea to create a dependency injection
system.
The following class uses this decorator and passes
the metadata:

@Inputs(["Employee"])

http://aurelia.io/
https://github.com/jonathandturner/decorators/blob/master/specs/metadata.md

92 DNC MAGAZINE Issue 19 (July-Aug 2015)

class MyClass {

 emp: Employee;
 constructor(e: Employee){
 this.emp = e;
 }
}

Now we can get the value of metadata applied
on this class using the metadata read APIs. The
following snippet reads the metadata of this class:

let value: Array<string> = Reflect.
getMetadata("InputsIntoClass", MyClass);
console.log(value);

The console.log statement in the above snippet
prints value of the metadata passed into the
decorator, which is an array containing a single
value in this case. You can read this information to
create an abstraction to instantiate the class.

Conclusion

The TypeScript team is putting together a lot
of work to make the language better for larger
applications and by keeping it as close to JavaScript
as possible. The new features and the support for
ES6 helps to keep the language relevant in modern
JavaScript world too. The final version of TypeScript
1.5 may include a couple of additonal features and
the next version will have support for async/await
(part of ES7 spec). We will keep you updated with
these features as they release

About the Author

ravi kiran

Ravi Kiran is a developer working on
Microsoft Technologies. These days,
he spends his time on the front-end
JavaScript framework Angular JS and
server frameworks like ASP.NET Web
API and SignalR. He actively writes
what he learns on his blog at
sravi-kiran.blogspot.com. He is a
DZone MVB. You can follow him on
twitter at @sravi_kiran

http://sravi-kiran.blogspot.com

http://www.dotnetcurry.net/s/dncmag-jqckbk-july15

